全文获取类型
收费全文 | 129篇 |
免费 | 99篇 |
国内免费 | 87篇 |
专业分类
化学 | 133篇 |
晶体学 | 50篇 |
综合类 | 2篇 |
数学 | 4篇 |
物理学 | 126篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2022年 | 5篇 |
2021年 | 15篇 |
2020年 | 6篇 |
2019年 | 4篇 |
2018年 | 9篇 |
2017年 | 14篇 |
2016年 | 9篇 |
2015年 | 11篇 |
2014年 | 14篇 |
2013年 | 24篇 |
2012年 | 13篇 |
2011年 | 13篇 |
2010年 | 17篇 |
2009年 | 39篇 |
2008年 | 24篇 |
2007年 | 18篇 |
2006年 | 20篇 |
2005年 | 22篇 |
2004年 | 6篇 |
2003年 | 1篇 |
2002年 | 4篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1995年 | 1篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1991年 | 4篇 |
1990年 | 2篇 |
排序方式: 共有315条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
利用硼酸功能化的磁性碳纳米管作为反应基质, 采用一种简便、 绿色的硼酸亲和表面定向印迹法制备了槲皮素磁性分子印迹聚合物, 并将其应用于银杏叶提取物中槲皮素的特异性识别. 透射电子显微镜、 X射线光电子能谱仪、 X射线衍射及振动样品磁强计测试结果表明, 制备的分子印迹聚合物具有良好的形貌和晶型结构. 吸附实验结果表明, 该分子印迹聚合物对模板分子槲皮素具有较好的吸附容量(4.57 μg/mg)、 良好的印迹效果(IF=8.44)和再生能力. 对实际中药样品银杏叶提取物的吸附实验结果表明, 所建立的方法能达到预期的槲皮素检测效果, 可作为中药有效成分槲皮素的特异性识别工具. 相似文献
65.
通过在钙钛矿前驱溶液中加入甲基乙酸铵(MAAc)并结合氯苯(CB)反溶剂工艺制备了MAPbI3及MA1-x FAx PbI3混合阳离子钙钛矿薄膜,并系统研究了其在薄膜结晶过程中的协同作用.发现MAAc可以诱导MAPbI3晶体在(112)/(200)而非(110)方向上的晶化,且CB反溶剂处理可以进一步促进MAPbI3(112)/(200)的晶化;在MA1-x FAx PbI3混合阳离子钙钛矿体系中则同时存在(110)和(112)/(200)结晶取向,且(110)取向上的结晶比例随FA+含量的增加而提高,CB反溶剂处理将促进晶粒在(110)取向上的生长.最终通过工艺优化,在前驱溶液中加入16;的MAAc并利用CB反溶剂工艺,实现了效率为~17.5;且无明显迟滞现象的MA0.9 FA0.1 PbI3钙钛矿太阳电池. 相似文献
66.
在水热条件下,通过使用羧酸和螯合配体得到了一个系列的四核镧系簇合物,即[Ln4(mnba)12(tzp)2(H2O)2](Ln=Gd(1),Tb(2),Er(3);Hmnba=间硝基苯甲酸;tzp=2-(1H-1,2,4-三唑-3-基)吡啶))。这3个化合物是同构的,且具有线性的四核簇结构。磁性研究表明,化合物1和3中簇内镧系离子之间是弱铁磁耦合的,但化合物2中铽离子之间是弱的反铁磁相互作用和(或)铽离子激发的斯塔克能级的去布居。化合物1具有较大的磁热效应(-ΔSmmax=20.6J·kg-1·K-1)。交流磁化率测试表明化合物3展现出频率和温度依赖的虚部信号,这是慢磁弛豫的典型特征,原因是铒离子的强各向异性和铁磁耦合的存在。 相似文献
67.
作为零维碳基发光纳米材料,碳点是对现有发光纳米材料的重要补充. 精准控制粒径及表面结构对实现碳点的性质调控及其应用至关重要. 本文介绍了本课题组在利用电化学方法研究荧光碳点方面的进展. 重点展示了利用电化学方法实现对碳点粒径的控制,对表面氧化程度的调节以及对其发光机理的研究. 电化学方法可对只有几纳米厚度的材料表面进行有效的控制,可操作性强且经济环保. 通过对碳点的粒径及表面的调控,作者也进一步揭示了碳点的发光与表面结构的相关性. 这些工作为碳点的合成及其性质调控提供了可循的规律,有利于推动碳点在生物医生成像、传感检测、催化及能源转化等领域的应用. 相似文献
68.
69.
70.
合成了星型多臂端氨基聚乙二醇(PEG)/聚乳酸-羟基乙酸(PLGA)两亲性嵌段共聚物(4s-PLGA-PEG-NH2), 并通过核磁共振和凝胶渗滤色谱法对其结构进行表征; 采用溶剂挥发法制备阿霉素载药纳米胶束, 利用EDC缩合法与叶酸偶联, 得到叶酸修饰的星型端氨基PEG-PLGA纳米胶束; 采用动态光散射、 紫外光谱及透射电镜等手段对纳米胶束进行了表征; 对载药纳米胶束在HeLa细胞中的摄取及细胞毒性进行了初步评价. 结果表明, 经叶酸修饰的星型多臂端氨基PEG-PLGA载药纳米胶束可有效提高HeLa细胞的摄取率以及对HeLa细胞的杀伤率, 表明其可作为一类新型的靶向抗肿瘤药物递送载体. 相似文献