首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14420篇
  免费   2679篇
  国内免费   2031篇
化学   11604篇
晶体学   160篇
力学   737篇
综合类   215篇
数学   1622篇
物理学   4792篇
  2024年   32篇
  2023年   307篇
  2022年   340篇
  2021年   466篇
  2020年   671篇
  2019年   737篇
  2018年   537篇
  2017年   442篇
  2016年   781篇
  2015年   779篇
  2014年   873篇
  2013年   1048篇
  2012年   1305篇
  2011年   1289篇
  2010年   938篇
  2009年   861篇
  2008年   967篇
  2007年   864篇
  2006年   743篇
  2005年   684篇
  2004年   589篇
  2003年   584篇
  2002年   694篇
  2001年   624篇
  2000年   385篇
  1999年   338篇
  1998年   199篇
  1997年   174篇
  1996年   148篇
  1995年   132篇
  1994年   84篇
  1993年   74篇
  1992年   88篇
  1991年   90篇
  1990年   76篇
  1989年   41篇
  1988年   36篇
  1987年   21篇
  1986年   26篇
  1985年   23篇
  1984年   18篇
  1983年   8篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1959年   4篇
  1936年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Recently, low‐dimensional organic‐inorganic hybrid metal halide perovskites acting as single‐component white‐light emitting materials have attracted extensive attention, but most studies concentrate on hybrid lead perovskites. Herein, we present two isomorphic zero‐dimensional (0D) hybrid cadmium perovskites, (HMEDA)CdX4 (HMEDA=hexamethylenediamine, X=Cl ( 1 ), Br ( 2 )), which contain isolated [CdX4]2? anions separated by [HMEDA]2+ cations. Under UV light excitation, both compounds display broadband bluish white‐light emission (515 nm for 1 and 445 nm for 2 ) covering the entire visible light spectrum with sufficient photophysical stabilities. Remarkably, compound 2 shows a high color rendering index (CRI) of 83 enabling it as a promising candidate for single‐component WLED applications. Based on the temperature‐dependent, powder‐dependent and time‐resolved PL measurements as well as other detailed studies, the broadband light emissions are attributed to self‐trapped excitons stemming from the strong electron‐phonon coupling.  相似文献   
982.
As the power supply of the prosperous new energy products, advanced lithium ion batteries (LIBs) are widely applied to portable energy equipment and large‐scale energy storage systems. To broaden the applicable range, considerable endeavours have been devoted towards improving the energy and power density of LIBs. However, the side reaction caused by the close contact between the electrode (particularly the cathode) and the electrolyte leads to capacity decay and structural degradation, which is a tricky problem to be solved. In order to overcome this obstacle, the researchers focused their attention on electrolyte additives. By adding additives to the electrolyte, the construction of a stable cathode‐electrolyte interphase (CEI) between the cathode and the electrolyte has been proven to competently elevate the overall electrochemical performance of LIBs. However, how to choose electrolyte additives that match different cathode systems ideally to achieve stable CEI layer construction and high‐performance LIBs is still in the stage of repeated experiments and exploration. This article specifically introduces the working mechanism of diverse electrolyte additives for forming a stable CEI layer and summarizes the latest research progress in the application of electrolyte additives for LIBs with diverse cathode materials. Finally, we tentatively set forth recommendations on the screening and customization of ideal additives required for the construction of robust CEI layer in LIBs. We believe this minireview will have a certain reference value for the design and construction of stable CEI layer to realize desirable performance of LIBs.  相似文献   
983.
Three novel complexes, namely, penta‐μ‐acetato‐bis(μ2‐2‐{[2‐(6‐chloropyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolato)‐μ‐formato‐tetramanganese(II), [Mn4(C13H11ClN3O2)2(C2H3O2)5.168(CHO2)0.832], 1 , hexa‐μ2‐acetato‐bis(μ2‐2‐{[2‐(6‐bromopyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolato)tetramanganese(II), [Mn4(C13H11BrN3O2)2(C2H3O2)6], 2 , and catena‐poly[[μ2‐acetato‐acetatoaqua(μ2‐2‐{[2‐(6‐chloropyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolato)dimanganese(II)]‐μ2‐acetato], [Mn2(C13H11ClN3O2)(C2H3O2)3(H2O)]n, 3 , have been synthesized using solvothermal methods. Complexes 1 – 3 were characterized by IR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. Complexes 1 and 2 are tetranuclear manganese clusters, while complex 3 has a one‐dimensional network based on tetranuclear Mn4(L1)2(CH3COO)6(H2O)2 building units (L1 is 2‐{[2‐(6‐chloropyridin‐2‐yl)hydrazinylidene]methyl}‐6‐methoxyphenolate). Magnetic studies reveal that complexes 1 – 3 display dominant antiferromagnetic interactions between MnII ions through μ2‐O bridges. In addition, 1 – 3 also display favourable electrochemiluminescence (ECL) properties.  相似文献   
984.
Microencapsulations of sodium phosphate dodecahydrate with different crosslinked polymer as shells were carried out by in situ polymerization and solvent evaporation method. Methyl methacrylate (MMA), urea were employed to crosslink with ethyl acrylate (EA) and formaldehyde, respectively. The influences of the type of crosslinking agent on the performance of as-prepared microencapsulated phase change materials (microPCMs) have been studied. The microPCMs were investigated using Fourier transformed infrared spectroscopy, scanning electron microscopy, and transmission electron microscope. Thermal properties and thermal stability of microPCMs were characterized by differential scanning calorimetry and thermalgravimetric analysis. Conclusion points out that thermal properties and thermal resistant temperatures of microPCMs vary from the type of crosslinkable functional moieties of the crosslinking agents. The temperature range of melting enlarged and the melting temperature increased according to the prepared microPCMs, which is suitable for thermal energy storage.  相似文献   
985.
986.
987.
988.
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号