首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
  国内免费   1篇
化学   29篇
晶体学   1篇
数学   1篇
物理学   5篇
  2019年   1篇
  2015年   2篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1994年   1篇
  1980年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
21.
The elongation finite-field method is applied to calculate (hyper)polarizabilities of polyimides PMDA/DMDB, PMDA/ODA, and PMDA/TFDB. The nonlinear optical (NLO) properties of planar structures of three polyimides are compared to those of their twist structures. It is found that all α and γ values of the planar structures are larger than the corresponding values of the twist structures, which may be attributed to the fact that π-conjugation of twist structures is decreased compared with the planar structures. All β values of planar and twist structures oscillate regularly along with elongating the chain. Moreover, effect of two side-groups –CH3 and –CF3 on the NLO properties of PMDA/DMDB and PMDA/TFDB is investigated.  相似文献   
22.
We systematically investigated the role of the top interface for TaCx and HfCx/HfO2 gate stacks on the effective work function (Φm,eff) shift by inserting a SiN layer at the gate/HfO2 top interface or HfO2/SiO2 bottom interface. We found that Φm,eff of the TaN gate electrode on HfO2 was larger than that on SiO2 because of the HfO2/SiO2-bottom-interface dipole. On the other hand, we found that Φm,eff values of the TaCx and HfCx gate electrodes on HfO2 agree with Φm,eff on SiO2. This is because the potential offset of the opposite direction with respect to the bottom interface dipole appears at the metal carbide/HfO2 interface. It is thus concluded that the top interface in the metal carbide/HfO2 gate stacks causes the negative Φm,eff shift.  相似文献   
23.
The elongation finite-field (elongation-FF) method is applied to donor/acceptor substituted polydiacetylenes (PDAs) for the estimation of substituent effects on nonlinear optical (NLO) properties. The first hyperpolarizability (beta) and the second hyperpolarizability (gamma) of PDA with separated donor and acceptor substitution blocks have much larger values than those of the other substituted PDAs. For the PDAs with donor and acceptor substitution blocks, the relationship between the NLO properties and the block period is examined. It is shown, from the local density of states, that gamma of a system with a quantum well structure has a maximum value at a certain block size. This indicates that by tuning the size of proper block it is possible to achieve the largest gamma value in block polymers. Furthermore, the through-space/bond interaction analysis is performed to examine the pi-conjugation effects on the NLO properties for particular substituted PDA. It is demonstrated by our quantitative analysis that beta is affected by electron transfers in the molecule, and the quantum well structure is critical for gamma improvement.  相似文献   
24.
Elongation method was applied to determine the electronic structures of B-type poly(dG).poly(dC) DNA at the ab initio molecular orbital level as a first step toward the calculation of aperiodic DNA. The discrepancy in total energy between the elongation method and a conventional calculation was negligibly small in the order of 10(-8) hartreeat. for 14 G-C base pair model. The local density of states for 10 G-C base pair model estimated by the elongation method well reproduced the results by the conventional calculation. It was found that the band gap of the whole system is mainly due to the energy difference between the valence band of guanine and the conduction band of cytosine. Moreover, the electron transfer path through stacking G-C base pairs rather than sugar-phosphate backbones has been confirmed by the authors' calculations.  相似文献   
25.
Ab initio through-space/bond interaction analysis was applied to [3 + 2] annulation based on Brook rearrangement using beta-phenylthio-acryloylsilanes with alkyl methyl ketone enolates. An uncertain reaction mechanism, wherein a bulky cyclopentenol with large substituents on the same side of the five-membered ring was obtained as a major product, can be explained by the low activation energy of its reaction pathway. Intramolecular orbital interactions related to the carbanion generated by Brook rearrangement preferentially provide the stabilization of the reaction pathway to the bulky cyclopentenol (major product) compared with that provided to the non-bulky cyclopentenol (minor product). In addition, ab initio molecular orbital calculations suggest the existence of an E/Z conformational inversion after Brook rearrangement. This result accurately explains the loss of the E/Z stereochemical integrity in the starting materials of the experiment.  相似文献   
26.
The mechanism of isotactic polypropylene (iPP) polymerization with an (R,R)-ansa-zirconocene/borate catalyst system was analyzed using quantum chemistry (QC) calculations by focusing on the extent of structural change during monomer insertion. The activation energy for migratory insertion, Ea, was compared for four possible reaction paths with regard to monomer coordination, that is, 1,2-re, 1,2-si, 2,1-si, and 2,1-re, until the seventh monomer insertion step, explicitly including a borate anion cocatalyst. This indicated that the 1,2-re path was most favorable, except for the first step, which favored 1,2-si. As far as the first step, the product of 1,2-si is a conformational isomer to that of the 1,2-re path, and the exceptional favorability of 1,2-si does not affect the isoselectivity. These results support previous studies, except that our results address the unexplored seventh insertion step with a borate anion cocatalyst by QC calculations. The isoselectivity correlated with the extent of structural change in the whole system during the reaction. It was proved from our detail analysis that the advantage of 1,2-re with a small Ea is attributed to its smaller structural changes due to low steric repulsion in the system compared with other paths. Conversely, larger repulsion in the systems involved in other paths results in larger structural changes to minimize the structural strain. However, the relaxation appears insufficient due to structural restriction of the enforced four-membered ring transition state structure. A borate anion cocatalyst broke the C2 symmetry of the electronic structures of zirconocene, resulting in an odd–even Ea frequency for the monomer insertion. Molecular orbital analysis demonstrated that the d–π orbital overlaps can explain the approach direction of the olefin coordination and the bent structure of zirconocene, providing a different viewpoint from previous studies. The potential for catalyst control was discussed based on our results. © 2019 Wiley Periodicals, Inc.  相似文献   
27.
The elongation method has been applied to elucidate the spin-dependent behavior of the pyrrole-based spin-polarized molecular wire containing 1-pyrrolylphenyl nitronyl nitroxide with oligothiophene units under the influence of an applied electric field. It was found that the donor pyrrole ring causes the delocalization of electrons over the molecular wire regardless of the spin-orientation. In addition, nitronyl nitroxide as a radical unit shows two important features. First, it changes the spin-distribution of the delocalized electrons from same ratio of α- and β-spins to dominant β-spin. Second, it shifts the distribution of electrons in the same direction as that of the applied electric field.  相似文献   
28.
We approached the solvatochromic transition observed in polysilane derivatives (poly[bis(4‐propoxybutyl)silylene] (PPBS)) from the standpoint of various quantum chemical treatments. It was found from conventional geometry optimizations at the levels of semiempirical and ab initio molecular orbital methods that a protonation to polysilane oligomers with side chain R = ? OCH3 results in the conformational change of Si‐backbone to a trans‐zigzag structure. Using the Elongation method, which was developed for efficient calculations of huge systems, it was demonstrated that a protonation could change the conformation of Si‐backbone to a trans‐zigzag structure over 10–14 Si atoms. In addition, ab initio calculations showed that the positive charge of a proton can delocalize into the Si‐backbone through a long side chain in PPBS. Positively charged polysilane oligomers provide a rotational barrier that prefers a trans‐zigzag structure, whereas neutral oligomers have a barrier that results to a random structure. This unique behavior of the charged polysilane oligomers should not be disregarded in understanding the mechanism of the solvatochromic transition in PPBS. In ab initio configuration interaction/Mφller‐Plesset through‐space/bond interaction analysis, it was found that such a unique behavior of the rotational barrier in polysilane oligomers could be explained by the effect of orbital delocalization through σ‐conjugation on the Si‐backbone. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 119–133, 2006  相似文献   
29.
We applied ab initio order‐N elongation (ELG) method to calculate electronic structures of various deoxyribonucleic acid (DNA) models. We aim to test potential application of the method for building a database of DNA electronic structures. The ELG method mimics polymerization reactions on a computer and meets the requirements for linear scaling computational efficiency and high accuracy, even for huge systems. As a benchmark test, we applied the method for calculations of various types of random sequenced A‐ and B‐type DNA models with and without counterions. In each case, the ELG method maintained high accuracy with small errors in energy on the order of 10?8 hartree/atom compared with conventional calculations. We demonstrate that the ELG method can provide valuable information such as stabilization energies and local densities of states for each DNA sequence. In addition, we discuss the “restarting” feature of the ELG method for constructing a database that exhaustively covers DNA species. © 2015 Wiley Periodicals, Inc.  相似文献   
30.
Through‐space/bond orbital interaction analysis has been applied to investigate the stereoelectronic effects on stabilizing the transition state of Menshutkin‐type SN2 reactions. The mechanism of how the substituent effects work on accelerating the reactions has been demonstrated from orbital interaction perspective. The geometrical structures and Mulliken charge distributions have been compared to elucidate the substituent effects for the SN2 reaction center. It is found that the substituents lower the activation energies by strengthening the orbital interactions in the SN2 reaction process. When electron‐donating and electron‐accepting substituents (–C6H5 and –CHO) are introduced to the same central carbon at the reaction center, the symmetry allows the π–π* interactions among the donor and acceptor in the transition state. It stabilizes the transition state much more than the reactant complex. And the π–π* interactions are estimated to decrease about 2.28 kcal/mol of the energy for transition state. The σ‐like orbitals of the partial bond around the central carbon are reactive, and the σ–π* orbital interactions stabilize the reactant complex much more than the π–σ* interaction. When the σ–π* and π–σ* interactions are deleted from the system, the activation energy increases and turns close to the values of the systems which are without such substituents. It can be concluded that the π–π*, σ–π*, and π–σ* interactions cooperatively accelerates the SN2 reaction by stabilizing its transition state. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号