首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1017篇
  免费   36篇
  国内免费   5篇
化学   823篇
晶体学   7篇
力学   17篇
数学   63篇
物理学   148篇
  2023年   7篇
  2022年   7篇
  2021年   14篇
  2020年   17篇
  2019年   17篇
  2018年   15篇
  2017年   15篇
  2016年   27篇
  2015年   23篇
  2014年   27篇
  2013年   55篇
  2012年   62篇
  2011年   79篇
  2010年   34篇
  2009年   33篇
  2008年   69篇
  2007年   86篇
  2006年   77篇
  2005年   64篇
  2004年   58篇
  2003年   50篇
  2002年   47篇
  2001年   15篇
  2000年   10篇
  1999年   10篇
  1998年   12篇
  1997年   8篇
  1996年   7篇
  1995年   13篇
  1994年   9篇
  1993年   9篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1987年   3篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   8篇
  1981年   6篇
  1980年   9篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1956年   1篇
排序方式: 共有1058条查询结果,搜索用时 15 毫秒
81.
Size distribution measurements and classification tests by a low pressure differential mobility analyzer (LPDMA) for nanometer-sized silver particles and cesium iodide particles under low pressure conditions (123–300 Torr) were performed using a transmission electron microscope (TEM) and the tandem DMA technique. When the ratio of the sheath gas flow rate and the aerosol gas flow rate was set at 5 : 1, the targeted sizes calculated from the classification voltage applied to the LPDMA at 160 Torr are found to be in good correlation with the count mean Feret diameter obtained from the TEM observation of the particles collected after a classification ranging from 6 to 25 nm, although the targeted sizes set by the LPDMA were approximately 15% greater than the count mean Feret diameter measured by the TEM after classification. The geometric standard deviations of DMA-classified particles measured by TEM and those obtained from the tandem DMA method ranged from 1.08 to 1.17 and from 1.05 to 1.13, respectively. They were slightly greater than the ideal geometric standard deviations (1.05) of the particles classified with the LPDMA, which was calculated by neglecting the broadening effects due to Brownian diffusion. We experimentally demonstrated the validity of our LPDMA system for size measurements and classification of the nanometer-sized particles under low pressure conditions.  相似文献   
82.
For the evaluation of two-dimensional carrier profiles in semiconductor devices, we have developed a novel form of probe–sensor combined unit that uses an etched tungsten wire as a conductive probe, and commercially available quartz tuning fork as the force sensor. This unit has a self-sensing capability due to the piezoelectric effect of quartz tuning fork, thus obviating optical setup, and its conductivity is higher and more stable than that of conventional metal-coated Si cantilever. In addition, this probe–sensor combined unit is inexpensive and easy to use, when compared to the well-known optical methods of Si-based cantilever vibration detection system. Our scanning probe microscope using this probe–sensor combined unit is able to mapping the capacitive gradient signal (dC/dZ image) and internal damping of quartz tuning fork oscillation (dissipation image) while scanning the sample surface. In this letter, we show the results of visualization of the p–n junction locus of a Si metal–oxide–semiconductor field effect transistor in both dC/dZ and dissipation images.  相似文献   
83.
We propose a scale-free network model with a tunable power-law exponent. The Poisson growth model, as we call it, is an offshoot of the celebrated model of Barabási and Albert where a network is generated iteratively from a small seed network; at each step a node is added together with a number of incident edges preferentially attached to nodes already in the network. A key feature of our model is that the number of edges added at each step is a random variable with Poisson distribution, and, unlike the Barabási–Albert model where this quantity is fixed, it can generate any network. Our model is motivated by an application in Bayesian inference implemented as Markov chain Monte Carlo to estimate a network; for this purpose, we also give a formula for the probability of a network under our model.  相似文献   
84.
Starburst triblock copolymers consisting of 8‐arm poly(ethylene glycol) (8‐arm PEG) and biodegradable poly(L ‐lactide) (PLLA) or its enantiomer poly(D ‐lactide) (PDLA), 8‐arm PEG‐b‐PLLA‐b‐PEG ( Stri‐L ), and 8‐arm PEG‐b‐PDLA‐b‐PEG ( Stri‐D ) were synthesized. An aqueous solution of a 1:1 mixture ( Stri‐Mix ) of Stri‐L and Stri‐D assumed a sol state at room temperature, but instantaneously formed a physically crosslinked hydrogel in response to increasing temperature. The resulting hydrogel exhibited a high‐storage modulus (9.8 kPa) at 37 °C. Interestingly, once formed at the transition temperature, the hydrogel was stable even after cooling below the transition temperature. The hydrogel formation process was irreversible because of the formation of stable stereocomplexes. In aqueous solution, gradual hydrolytic erosion was observed because of degradation of the hydrogel. The combination of rapid temperature‐triggered irreversible hydrogel formation, high‐mechanical strength, and degradation behavior render this polymer mixture system suitable for use in injectable biomedical materials, for example, as a drug delivery system for bioactive reagents or a biodegradable scaffold for tissue engineering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6317–6332, 2008  相似文献   
85.
Tripodal imidazole containing ligands, bis((2‐pyridyl)methyl)(1‐methylimidazole‐2‐yl)methyl)amine (BPIA) and bis(1‐methylimidazole‐2‐yl)methyl)((2‐pyridyl)methyl)amine (BIPA), were synthesized and used for copper catalyzed atom transfer radical polymerization (ATRP) of n‐butyl acrylate (nBA). The molecular weights of poly(n‐butyl acrylate) (PnBA) catalyzed by CuBr/BPIA and CuBr/BIPA complexes increased linearly with nBA conversions and they were close to theoretical values with low polydispersities. ATRP equilibrium rate constant (KATRP) measurements showed that bothCuBr/BPIA and CuBr/BIPA complexes had high KATRP values, similar to that of CuBr/tri(2‐pyridylmethyl)amine (TPMA), which is one of the ATRP most active ligands. Activators regenerated by electron transfer (ARGET) ATRP of nBA with CuBr2/BPIA and CuBr2/BIPA complexes were also conducted and polymerization reached high nBA conversions, resulting in PnBA with low polydispersities. This suggests that the copper complexes with BPIA and BIPA were sufficiently stable and active to conduct ATRP when catalyst concentration was low. ARGET ATRP to form high molecular weight PnBA with CuBr2/BPIA and CuBr2/BIPA complexes was also successful. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2015–2024, 2008  相似文献   
86.

Background  

BIR family proteins are evolutionarily conserved anti-apoptotic molecules. One member of Xenopus BIR family proteins, xEIAP/XLX, is a weak apoptosis inhibitor and rapidly degraded in a cell-free apoptotic execution system derived from interphase egg extracts. However, unfertilized eggs are naturally arrested at the metaphase of meiosis II by the concerted activities of Mos-MEK-p42MAPK-p90Rsk kinase cascade (cytostatic factor pathway) and many mitotic kinases. Previous studies suggest that cytostatic factor-arrested egg extracts are more resistant to spontaneous apoptosis than interphase egg extracts in a p42MAPK-dependent manner. We tested whether xEIAP/XLX might be phosphorylated in cytostatic factor-arrested egg extracts, and also examined whether xEIAP/XLX could be functionally regulated by phosphorylation.  相似文献   
87.
88.
Cross-benzoin condensation catalyzed by NHC, prepared from chiral triazolium salts bearing a pyridine ring, afforded α-hydroxy ketones with reasonable chemical yields and enantioselectivities. A wide range of aliphatic and aromatic aldehydes were successfully used in the reaction.  相似文献   
89.
We report a new and facile method for synthesizing 3D platinum nanoflowers (Pt Nfs) on a scratched silicon substrate by electroless galvanic displacement and discuss the applications of the Pt Nfs in surface‐assisted laser desorption/ionization‐mass spectrometry (SALDI‐MS). Surface scratching of n‐type silicon is essential to induce Pt Nf growth on a silicon substrate (to obtain a Pt Nf silicon hybrid plate) by the galvanic displacement reaction. The Pt Nf silicon hybrid plate showed excellent SALDI activity in terms of the efficient generation of protonated molecular ions in the absence of a citrate buffer. We propose that the acidity of the Si? OH moieties on silicon increases because of the electron‐withdrawing nature of the Pt Nfs; hence, proton transfer from the Si? OH groups to the analyte molecules is enhanced, and finally, thermal desorption of the analyte ions from the surface occurs. Signal enhancement was observed for protonated molecular ions produced from a titania nanotube array (TNA) substrate on which Pt nanoparticles had been photochemically deposited. Moreover, surface modification of the Pt Nf silicon hybrid plate by perfluorodecyltrichlorosilane (FDTS) (to obtain an FDTS‐Pt Nf silicon hybrid plate) was found to facilitate soft SALDI of labile compounds. More interestingly, the FDTS‐Pt Nf silicon hybrid plate acts 1) as a high‐affinity substrate for phosphopeptides and 2) as a SALDI substrate. The feasibility of using the FDTS‐Pt Nf silicon hybrid plate for SALDI‐MS has been demonstrated by using a β‐casein digest and various analytes, including small molecules, peptides, phosphopeptides, phospholipids, carbohydrates, and synthetic polymers. The hybridization of Pt Nfs with a scratched silicon substrate has been found to be important for achieving excellent SALDI activity.  相似文献   
90.
LaCuOSe is a wide band gap (~2.8 eV) semiconductor with unique optoelectronic properties, including room-temperature stable excitons, high hole mobility ~8 cm(2)/(Vs), and the capability of high-density hole doping (up to 1.7 × 10(21) cm(-3) using Mg). Moreover, its carrier transport and doping behaviors exhibit nonconventional results, e.g., the hole concentration increases with decreasing temperature and the high hole doping does not correlate with other properties such as optical absorption. Herein, secondary ion mass spectroscopy and photoemission spectroscopy reveal that aliovalent ion substitution of Mg at the La site is not the main source of hole doping and the Fermi level does not shift even in heavily doped LaCuOSe:Mg. As the hole concentration increases, the subgap optical absorption becomes more intense, but the increase in intensity does not correlate quantitatively. Transmission electron microscopy indicates that planar defects composed of Cu and Se deficiencies are easily created in LaCuOSe. These observations can be explained via the existence of a degenerate low-mobility layer and formation of complex Cu and Se vacancy defects with the assistance of generalized gradient approximation band calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号