首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6425篇
  免费   120篇
  国内免费   30篇
化学   4082篇
晶体学   26篇
力学   171篇
数学   1334篇
物理学   962篇
  2020年   60篇
  2019年   43篇
  2016年   96篇
  2015年   82篇
  2014年   89篇
  2013年   217篇
  2012年   196篇
  2011年   216篇
  2010年   142篇
  2009年   140篇
  2008年   203篇
  2007年   233篇
  2006年   197篇
  2005年   222篇
  2004年   196篇
  2003年   159篇
  2002年   175篇
  2001年   83篇
  2000年   105篇
  1999年   83篇
  1998年   66篇
  1997年   87篇
  1996年   84篇
  1995年   92篇
  1994年   89篇
  1993年   82篇
  1992年   96篇
  1991年   66篇
  1990年   71篇
  1989年   76篇
  1988年   94篇
  1987年   74篇
  1986年   85篇
  1985年   122篇
  1984年   117篇
  1983年   85篇
  1982年   123篇
  1981年   125篇
  1980年   110篇
  1979年   125篇
  1978年   114篇
  1977年   111篇
  1976年   98篇
  1975年   114篇
  1974年   82篇
  1973年   92篇
  1972年   57篇
  1971年   61篇
  1970年   65篇
  1966年   47篇
排序方式: 共有6575条查询结果,搜索用时 31 毫秒
81.
Preparation and physical and chemical properties of 3-ethinyl-2,4-diformyl-pentandial (3 a) and its salts are described.3 a contains 2 malonaldehyde groups. Starting from3 a, 4H-pyranes, 4H-dihydropyridines, dipyrazoles, diisoxazoles, bisdiazepines and vinamidine derivates are obtained.

Mit 1 Abbildung  相似文献   
82.
Two new imidoylnitrenes and alkoxycarbonylnitrene form a sequence of reactivities : Only ROCON attacks CH bonds, it and ROC(NCN)N convert benzene to azepines. Benzene is not attacked by ROC(NSO2CH3)N, but all three nitrenes react with olefins, alcohols, etc.  相似文献   
83.
Most alkyl phenyl sulfones are readily alpha-chlorinated with CCl(4) and alpha-brominated with CBrCl3 in KOH-t-BuOH via radical-anion radical pair (RARP) reactions. While isopropyl mesityl sulfone (4) is easily alpha-chlorinated with CCl(4), it was completely recovered when treated with the more reactive CBrCl3. Subsequent investigations showed the latter result to be due to the poor acidity of 4 together with the rapid depletion of CBrCl3 and KOH by their reaction with each other, and led to a variety of other important results. 4-Hydroxyphenyl isopropyl sulfone (6) is unreactive with either CCl4 or CBrCl3 in KOH-t-BuOH, its phenoxide anion strongly reducing the electronegativity of the sulfonyl group, thereby inhibiting alpha-anion formation. This effect is reversed by the electron-withdrawing influence of two alpha-phenyls, so that benzhydryl 4-hydroxyphenyl sulfone (8) is readily alpha-halogenated in KOH-t-BuOH with CCl4 or CBrCl3. On further contact with KOH-t-BuOH the alpha-halogenated sulfones from 8 are decomposed into benzophenone and phenol. While the alpha-halogenated derivatives of 4-methoxyphenyl benzhydryl sulfone (9) are stable to base, they are decomposed even under mildly acidic conditions into 4-methoxyphenyl 4-methoxybenzenethiolsulfonate (9c), phenol, and benzophenone. Mono-alpha-halogenation of benzyl phenyl sulfone (10) enhances the rate of the subsequent halogenation, so that alpha,alpha-dihalogenation is attained while much substrate is still present and the mono-alpha-halogenated product is not detected. The ease of reductive debromination of alpha-bromo sulfones with Cl3C- was correlated with the stability of the formed alpha-anions, explaining the success with alpha-bromobenzylic sulfones but failure with alpha-bromoalkyl sulfones. In the presence of air and the absence of competing halogenation, formation of the alpha-anions of alkyl aryl sulfones is quickly accompanied by oxidative cleavage by atmospheric O2, leading to the formation of arenesulfonyl alcohols, arenesulfonyl halides, and haloarenes.  相似文献   
84.
85.
A broad collection of technologies, including e.g. drug metabolism, biofuel combustion, photochemical decontamination of water, and interfacial passivation in energy production/storage systems rely on chemical processes that involve bond-breaking molecular reactions. In this context, a fundamental thermodynamic property of interest is the bond dissociation energy (BDE) which measures the strength of a chemical bond. Fast and accurate prediction of BDEs for arbitrary molecules would lay the groundwork for data-driven projections of complex reaction cascades and hence a deeper understanding of these critical chemical processes and, ultimately, how to reverse design them. In this paper, we propose a chemically inspired graph neural network machine learning model, BonDNet, for the rapid and accurate prediction of BDEs. BonDNet maps the difference between the molecular representations of the reactants and products to the reaction BDE. Because of the use of this difference representation and the introduction of global features, including molecular charge, it is the first machine learning model capable of predicting both homolytic and heterolytic BDEs for molecules of any charge. To test the model, we have constructed a dataset of both homolytic and heterolytic BDEs for neutral and charged (−1 and +1) molecules. BonDNet achieves a mean absolute error (MAE) of 0.022 eV for unseen test data, significantly below chemical accuracy (0.043 eV). Besides the ability to handle complex bond dissociation reactions that no previous model could consider, BonDNet distinguishes itself even in only predicting homolytic BDEs for neutral molecules; it achieves an MAE of 0.020 eV on the PubChem BDE dataset, a 20% improvement over the previous best performing model. We gain additional insight into the model''s predictions by analyzing the patterns in the features representing the molecules and the bond dissociation reactions, which are qualitatively consistent with chemical rules and intuition. BonDNet is just one application of our general approach to representing and learning chemical reactivity, and it could be easily extended to the prediction of other reaction properties in the future.

Prediction of bond dissociation energies for charged molecules with a graph neural network enabled by global molecular features and reaction difference features between products and reactants.  相似文献   
86.
1-, 2-cis-, 2-trans-, and 3-trans-heptenes (C7)are isomerized either very slowly or not at all with IrX(CO)L2 at 80°C in toluene and under N2. However, under the conditions of hydrogenation fast isomerisation takes place. With IrCl(CO)L2 as catalyst the rate of isomerisation decreases the order: 1-C7 ∼ 2-cis-C7 > 3-trans-C7 > 2-trans-C7. This sequence is independent of the ligand L in lrCl(CO)L2, however, with a particular isomer the rate of isomerisation is a function of L in the order L = PPh3 > P(C6H11)3 > P(OPh)3.  相似文献   
87.
Water-soluble dendritic cyclophanes (dendrophanes) of first ( 1 , 4 ), second ( 2 5 ), and third generation ( 3 6 ) with poly(ether amide) branching and 12, 36, and 108 terminal carboxylate groups, respectively, were prepared by divergent synthesis, and their molecular recognition properties in aqueous solutions were investigated. Dendrophanes 1 – 3 incorporate as the initiator core a tetraoxa[6.1.6.1]paracyclophane 7 with a suitably sized cavity for inclusion complexation of benzene or naphthalene derivatives. The initiator core in 4 – 6 is the [6.1.6.1]cyclo-phane 8 shaped by two naphthyl(phenyl) methane units with a cavity suitable for steroid incorporation. The syntheses of 1 – 6 involved sequential peptide coupling to monomer 9 , followed by ester hydrolysis (Schemes 1 and 4), Purification by gel-permeation chromatography (GPC; Fig. 3) and full spectral characterization were accomplished at the stage of the intermediate poly(methyl carboxylates) 10 – 12 and 23 – 25 , respectively. The third-generation 108-ester 25 was also independently prepared by a semi-convergent synthetic strategy, starting from 4 (Scheme 5). All dendrophanes with terminal ester groups were obtained in pure form according to the 13C-NMR spectral criterion (Figs, 1 and 5). The MALDI-TOF mass spectra of the third-generation derivative 25 (mol. wt. 19328 D) displayed the molecular ion as base peak, accompanied by a series of ions [Mn(1041 ± 7)]+, tentatively assigned as characteristic fragment ions of the poly(ether amide) cascade. A similar fragmentation pattern was also observed in the spectra of other higher-generation poly(ether amide) dendrimers. Attempts to prepare monodisperse fourth-generation dendrophanes by divergent synthesis failed. 1H-NMR and fluorescence binding titrations in basic aqueous buffer solutions showed that dendrophanes 1 – 3 complexed benzene and naphthalene derivatives, whereas 4 – 6 bound the steroid testosterone. Complexation occurred exclusively at the cavity-binding site of the central cyclophane core rather than in fluctuating voids in the dendritic branches, and the association strength was similar to that of the complexes formed by the initiator cores 7 and 8 , respectively (Tables 1 and 3). Fluorescence titrations with 6-(p-toluidino)naphthalene-2-sulfonate as fluorescent probe in aqueous buffer showed that the micropolarity at the cyclophane core in dendrophanes 1 - 3 becomes increasingly reduced with increasing size and density of the dendritic superstructure; the polarity at the core of the third-generation compound 3 is similar to that of EtOH (Table 2). Host-guest exchange kinetics were remarkably fast and, except for receptor 3 , the stabilities of all dendrophane complexes could be evaluated by 1H-NMR titrations. The rapid complexation-decomplexation kinetics are explained by the specific attachment of the dendritic wedges to large, nanometer-sized cyclophane initiator cores, which generates apertures in the surrounding dendritic superstructure.  相似文献   
88.
The performance of a proportional correction matrix effect reduction procedure was investigated for an axially viewed inductively coupled plasma. It was shown that the proportional correction factor (ratio of analyte matrix effect and internal standard matrix effect) was sufficiently stable over the investigated matrix element concentration ranges (0–2000 mg/L of Na and 0–400 mg/L of Ca) for the procedure to be successful. Proportional correction results in the best correction for matrix effects compared to the classical 1?:?1 intensity ratio correction procedure or the approach without any correction, as was shown in recovery experiments using analyte spiked groundwater samples. Matrix effects as high as 18% without correction were reduced to less than 4% applying proportional correction.  相似文献   
89.
The accidental but intriguing synthesis of acetatobis(triphenylphosphine)dicarbonylmanganese(I), (CH3CO2)Mn(CO)2[P(C6H5)3]2, has been accomplished by the reaction of NaMn(CO)5 with (CH3)3SiCl followed by the addition of triphenylphosphine and acetic acid. A three-dimensional single-crystal X-ray diffraction analysis has shown an octahedral-like molecule containing a symmetrically oxygen-chelating acetate group, the first such group to be reported in a metal carbonyl complex. The two triphenylphosphine ligands occupy mutually trans positions with the two carbonyl ligands possessing the remaining cis sites in the octahedral complex. The compound crystallizes with four molecules in a monoclinic unit cell of space group symmetry P21c and of dimensions a = 17.744(2) Å, b = 9.692(1) Å, c = 20.004(2) Å, and β = 106.195(4)°. The relatively long MnO(acetate) bond lengths [2.066(6) and 2.069(7) Å] and the relatively short MnCO bond lengths [1.701(12) and 1.760(13) Å] and the relatively short MnP(C6H5)3 bond lengths [2.260(3) and 2.275(3) Å], compared to the corresponding MnCO and MnP(C6H5)3 bond lengths in other manganese carbonyl triphenylphosphine complexes, are rationalized on the basis that the acetate ligand in this molecule functions primarily as a σ-donor.  相似文献   
90.
Infrared fluorescence observed after exciting to ν6 (ν=1) of CD3H with a Q-switched CO2 laser yields the exponential deactivation rate constant of 0.84 ms?1 torr?1. Rate constants for deactivation of CD3H by rare gases vary from 1.4 (for He) to 0.029 (for Xe) ms?1 torr?1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号