首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   19篇
  国内免费   2篇
化学   380篇
晶体学   3篇
力学   9篇
数学   85篇
物理学   101篇
  2023年   7篇
  2022年   5篇
  2021年   24篇
  2020年   30篇
  2019年   30篇
  2018年   19篇
  2017年   11篇
  2016年   13篇
  2015年   14篇
  2014年   22篇
  2013年   37篇
  2012年   42篇
  2011年   53篇
  2010年   31篇
  2009年   12篇
  2008年   23篇
  2007年   23篇
  2006年   33篇
  2005年   44篇
  2004年   20篇
  2003年   15篇
  2002年   17篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   8篇
  1997年   7篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1990年   2篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1975年   1篇
  1974年   1篇
  1955年   1篇
  1935年   1篇
排序方式: 共有578条查询结果,搜索用时 953 毫秒
21.
A gas turbine power plant for CO2 capture, based on oxygen-permeable membranes with mixed ionic-electronic conductivity, was analysed with respect to long-term stability by means of numerical simulation. Due to the attractive transport and physicochemical properties of mixed-conducting La2NiO4+δ, this nickelate was selected as a prototype membrane material for this application. Experiments showed very slow degradation of La2NiO4+δ membranes at oxygen chemical potentials close to atmospheric conditions, which are associated with kinetic demixing and other microstructure-related factors. Interaction with CO2 in the intermediate temperature range also leads to lower oxygen permeation, whilst increasing oxygen pressure may cause partial phase decomposition and microstructural changes, thus again limiting the range of possible operation conditions. The relevant operational constraints were included in a detailed membrane-based gas turbine power plant model. The membrane performance degradation with time was approximated by a linear function with average rate of 3.3% per 1,000 operation hours. Furthermore, performance deterioration of the gas turbine compressor and turbine were also considered. Simulations revealed that the power plant is substantially affected by degradation of the ceramic membranes and turbomachinery components. The already rather small operating window was further narrowed when compared with a conventional gas turbine power plant. Two different designs of the membrane-based power plant were analysed: (1) with and (2) without additional combustors (afterburners) between the membrane reactor and the gas turbine. Afterburners increase thermal efficiency as well as power output, but also lead to non-negligible CO2 emissions. In order to have a frame of comparison, results for a conventional gas turbine power plant with degradation of turbomachinery components are also presented. Simulations representing changes in ambient temperature and fuel composition as well as failure incidents were executed to analyse the susceptibility of the gas turbine power plant to external and internal changes.  相似文献   
22.
The fluorescent peptidocalixarenes, 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis(O-methyl-l-tryptophanylcarbonylmethoxy)calix[4]arene (1) and 5,11,17,23-tetra-tert-butyl-25,27-di(O-methyl)-26,28-bis(O-methyl-l-tryptophanylcarbonylmethoxy)calix[4]arene (2), were prepared by introducing tryptophan subunits at a lower calixarene rim. Coordination abilities of 1 and 2 towards Eu(III) and alkali metal cations were studied by spectrophotometric, spectrofluorimetric, conductometric and potentiometric titrations in acetonitrile at 25°C. Rather strong complexation was observed for smaller alkali metal cations Li+ and Na+ (log K Li1 >6, log K Li2 >6, log K Na1  = 8.25, log K Na2  = 6.94), and moderate for K+ (log K K1  = 5.09, log K K2  = 4.09). Larger Rb+ and Cs+ cations did not fit in the ion binding site of 1 so no complexation was detected, whereas the more flexible ligand 2 accommodated Rb+ cation (log K Rb2  = 3.44). The fluorescence of 1ex = 280 nm, λem = 340 nm) was remarkably quenched by Eu(III). Stability constant of 1:1 (Eu3+:1) complex determined spectrofluorimetrically amounted to log K Eu1  = 6.16.  相似文献   
23.
A novel method for obtaining cross-linked microgels of apple pectin has been introduced. This method is based on the Ugi four-component condensation in colloidal suspensions of pectinic acid and amines. Using various processing parameters (the polysaccharide concentration, the type and density of crosslink, and the optimal pH range), particles with controlled colloidal properties have been obtained. Lightly cross-linked polysaccharide chains acquire anionic character due to deprotonation of the carboxyl groups at pH?9–10. Increasing the degree of cross-linking leads to a polyampholyte microgel, which can be protonated in acidic medium or deprotonated in basic medium. Polyampholyte microgels derived from apple pectin have proved to be an effective Pickering emulsifier at low concentrations and pH?2–3, forming stable oil-in-water emulsions. These Pickering emulsions exhibited pH-responsive behavior: raising the solution pH to 10 resulted in immediate demulsification due to the destabilization of microgel network at the oil–water interface.  相似文献   
24.
Selberg-type integrals that can be turned into constant term identities for Laurent polynomials arise naturally in conjunction with random matrix models in statistical mechanics. Built on a recent idea of Karasev and Petrov we develop a general interpolation based method that is powerful enough to establish many such identities in a simple manner. The main consequence is the proof of a conjecture of Forrester related to the Calogero–Sutherland model. In fact we prove a more general theorem, which includes Aomoto's constant term identity at the same time. We also demonstrate the relevance of the method in additive combinatorics.  相似文献   
25.
The chemical dynamics of the elementary reaction of ground state atomic silicon (Si; 3P) with germane (GeH4; X1A1) were unraveled in the gas phase under single collision condition at a collision energy of 11.8±0.3 kJ mol−1 exploiting the crossed molecular beams technique contemplated with electronic structure calculations. The reaction follows indirect scattering dynamics and is initiated through an initial barrierless insertion of the silicon atom into one of the four chemically equivalent germanium-hydrogen bonds forming a triplet collision complex (HSiGeH3; 3 i1 ). This intermediate underwent facile intersystem crossing (ISC) to the singlet surface (HSiGeH3; 1 i1 ). The latter isomerized via at least three hydrogen atom migrations involving exotic, hydrogen bridged reaction intermediates eventually leading to the H3SiGeH isomer i5 . This intermediate could undergo unimolecular decomposition yielding the dibridged butterfly-structured isomer 1 p1 (Si(μ-H2)Ge) plus molecular hydrogen through a tight exit transition state. Alternatively, up to two subsequent hydrogen shifts to i6 and i7 , followed by fragmentation of each of these intermediates, could also form 1 p1 (Si(μ-H2)Ge) along with molecular hydrogen. The overall non-adiabatic reaction dynamics provide evidence on the existence of exotic dinuclear hydrides of main group XIV elements, whose carbon analog structures do not exist.  相似文献   
26.
In this study, new biodegradable and biocompatible amphiphilic polymers were obtained by modifying the peripheral hydroxyl groups of branched polyethers and polyesters with organosilicon substituents. The structures of the synthesized polymers were confirmed by NMR and GPC. Organosilicon moieties of the polymers were formed by silatranes and trimethylsilyl blocks and displayed hydrophilic and hydrophobic properties, respectively. The effect of the ratio of hydrophilic to hydrophobic organosilicon structures on the surface activity and biological activity of macromolecules was studied, together with the effect on these activities of the macromolecules’ molecular weight and chemical structure. In particular, the critical micelle concentrations were determined, the effect of the structure of the polymers on their wetting with aqueous solutions on glass and parafilm was described, and the aggregation stability of emulsions was studied. Finally, the effect of the polymer structures on their antifungal activity and seed germination stimulation was examined.  相似文献   
27.
The synthesis and electropolymerization of a pyrrolic concanavalin A derivative (pyrrole‐Con A) onto a multiwalled carbon nanotube (MWCNT) deposit is reported. Glucose oxidase was then immobilized onto the MWCNT‐poly(pyrrole‐Con A) coating by affinity carbohydrate interactions with the polymerized Con A protein. The resulting enzyme electrode was applied to the amperometric detection of glucose exhibiting a high sensitivity of 36 mA cm?2 mol?1 L and a maximum current density of 350 μA cm?2.  相似文献   
28.
Nuclear magnetic resonance (NMR) spectroscopy serves as an indispensable tool in chemistry and biology but often suffers from long experimental times. We present a proof‐of‐concept of the application of deep learning and neural networks for high‐quality, reliable, and very fast NMR spectra reconstruction from limited experimental data. We show that the neural network training can be achieved using solely synthetic NMR signals, which lifts the prohibiting demand for a large volume of realistic training data usually required for a deep learning approach.  相似文献   
29.

Transport properties of perovskite-type Sr11Mo4O23 and composite Sr11Mo4O23 - 1 wt% Al2O3 were studied at 400–1300 K in the oxygen partial pressure range from 0.21 down to 10−19 atm. The electromotive force and faradaic efficiency measurements, in combination with the energy-dispersive spectroscopy of the fractured electrochemical cells, unambiguously showed prevailing role of the oxygen ionic conductivity under oxidizing conditions. At temperatures above 600 K, protonic and cationic transport can be neglected. The oxygen ion transference numbers vary in the range of 0.95–1.00 at 973–1223 K. At temperatures lower than 550 K, the total conductivity of Sr11Mo4O23 - 1 wt% Al2O3 composite measured by impedance spectroscopy tends to increase in wet atmospheres, thus indicating that hydration and protonic transport become significant. Reducing oxygen partial pressure below 10−10–10−9 atm leads to a significant increase in the n-type electronic conduction. The average thermal expansion coefficients in oxidizing atmospheres are (14.3–15.0) × 10−6 K−1 at 340–740 K and (18.3–19.2) × 10−6 K−1 at 870–1370 K.

  相似文献   
30.
Most ternary sulfides belonging to the MGaS2 structure‐type have been known for many years and are well‐characterized. Surprisingly, there have been no reports of the NaGaS2 composition, which contains Na, a monovalent cation slightly larger in size than Li, found in LiGaS2, a compound known for its non‐linear optical properties. Now it is demonstrated for the first time that the unique reversible water absorption in NaGaS2 has resulted in its absence from previous reports owing to difficulties encountered when characterizing this compound by SC XRD. The layered structure of this compound coupled with uniquely easy migration of water molecules between the layers allows for ion exchange with 3d and 5f metal cations. Some cations, for example, Ni2+, facilitate exfoliation of the layers, providing a facile synthetic route to a new class of 2D chalcogenide materials and furthermore demonstrating that NaGaS2 can readily uptake uranyl species from aqueous solutions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号