首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1884篇
  免费   85篇
  国内免费   8篇
化学   1362篇
晶体学   19篇
力学   74篇
数学   290篇
物理学   232篇
  2023年   18篇
  2022年   15篇
  2021年   42篇
  2020年   56篇
  2019年   40篇
  2018年   31篇
  2017年   25篇
  2016年   55篇
  2015年   49篇
  2014年   68篇
  2013年   117篇
  2012年   128篇
  2011年   169篇
  2010年   75篇
  2009年   77篇
  2008年   132篇
  2007年   130篇
  2006年   106篇
  2005年   110篇
  2004年   93篇
  2003年   95篇
  2002年   103篇
  2001年   21篇
  2000年   15篇
  1999年   21篇
  1998年   25篇
  1997年   26篇
  1996年   21篇
  1995年   14篇
  1994年   12篇
  1993年   10篇
  1992年   9篇
  1991年   7篇
  1989年   9篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   8篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1895年   1篇
  1887年   2篇
排序方式: 共有1977条查询结果,搜索用时 46 毫秒
81.
82.
83.
84.
In prokaryote organisms, N-glycosylation of proteins is often correlated to cell–cell recognition and extracellular events. Those glycoproteins are potential targets for infection control. To date, many surface-glycosylated proteins from bacterial pathogens have been described. However, N-linked Pseudomonas surface-associated glycoproteins remain underexplored. We report a combined enrichment and labeling strategy to identify major glycoproteins on the outside of microorganisms. More precisely, bacteria were exposed to a mix of biotinylated lectins able to bind with glycoproteins. The latter were then recovered by avidin beads, digested with trypsin, and submitted to mass spectrometry. The targeted mixture of glycoproteins was additionally deglycosylated in the presence of H2 18O to incorporate 18O during PNGase F treatment and were also analyzed using mass spectrometry. This approach allowed us to identify a few tens of potential N-glycoproteins, among which flagellin FliC was the most abundant. To detect the possible sites of FliC modifications, a de novo sequencing step was also performed to discriminate between spontaneous deamidation and N-glycan loss. This approach led to the proposal of three potential N-glycosylated sites on the primary sequence of FliC: N26, N69, and N439, with two of these three asparagines belonging to an N-X-(S/T) consensus sequence. These observations suggest that flagellin FliC is a heterogeneous protein mixture containing both O- and N-glycoforms.
Figure
Analytical scenario developed for bacterial glycoprotein enrichment. This strategy includes three main steps: (1) exposure of Pseudomonas aeruginosa cells to a mixture of biotinylated lectins [wheat germ agglutinin (WGA) and concanavalin A (ConA)]; (2) enrichment of N-glycoproteins by elution with avidin beads; and (3) mass spectrometry (MS) identification and characterization of intact and deglycosylated peptides before and after H2 18O PNGase F enzymatic treatment, respectively  相似文献   
85.
We have developed asymmetric Mukaiyama aldol reactions of silicon enolates with aldehydes catalyzed by chiral FeII and BiIII complexes. Although previous reactions often required relatively harsh conditions, such as strictly anhydrous conditions, very low temperatures (?78 °C), etc., the reactions reported herein proceeded in the presence of water at 0 °C. To find appropriate chiral water‐compatible Lewis acids for the Mukaiyama aldol reaction, many Lewis acids were screened in combination with chiral bipyridine L1 , which had previously been found to be a suitable chiral ligand in aqueous media. Three types of chiral catalysts that consisted of a FeII or BiIII metal salt, a chiral ligand ( L1 ), and an additive have been discovered and a wide variety of substrates (silicon enolates and aldehydes) reacted to afford the desired aldol products in high yields with high diastereo‐ and enantioselectivities through an appropriate selection of one of the three catalytic systems. Mechanistic studies elucidated the coordination environments around the FeII and BiIII centers and the effect of additives on the chiral catalysis. Notably, both Brønsted acids and bases worked as efficient additives in the FeII‐catalyzed reactions. The assumed catalytic cycle and transition states indicated important roles of water in these efficient asymmetric Mukaiyama aldol reactions in aqueous media with the broadly applicable and versatile catalytic systems.  相似文献   
86.
The efficiency of the deprotocupration–aroylation of 2-chloropyridine using lithiocuprates prepared from CuX (X=Cl, Br) and LiTMP (TMP=2,2,6,6-tetramethylpiperidido, 2 equiv) was investigated. CuCl was identified as a more suitable copper source than CuBr for this purpose. Different diaryl ketones bearing a halogen at the 2 position of one of the aryl groups were synthesized in this way from azines and thiophenes. These were then involved in palladium-catalyzed ring closure: substrates underwent expected CH-activation-type arylation to afford fluorenone-type compounds, and were also subjected to cyclization reactions leading to xanthones, notably in the presence of oxygen-containing substituents or reagents.  相似文献   
87.
The synthesis of an anthracene‐bearing photoactive barbituric acid receptor and its subsequent grafting onto azide‐terminated alkanethiol/Au self‐assembled monolayers by using an CuI‐catalyzed azide–alkyne reaction is reported. Monolayer characterization using contact‐angle measurements, electrochemistry, and spectroscopic ellipsometry indicate that the monolayer conversion is fast and complete. Irradiation of the receptor leads to photodimerization of the anthracenes, which induces the open‐to‐closed gating of the receptor by blocking access to the binding site. The process is thermally reversible, and polarization‐modulated IR reflection–absorption spectroscopy indicates that photochemical closure and thermal opening of the surface‐bound receptors occur in 70 and 100 % conversion, respectively. Affinity of the open and closed surface‐bound receptor was characterized by using force spectroscopy with a barbituric‐acid‐modified atomic force microscope tip.  相似文献   
88.
Overhanging carboxylic acid porphyrins have revealed promising ditopic ligands offering a new entry in the field of supramolecular coordination chemistry of porphyrinoids. Notably, the adjunction of a so‐called hanging‐atop (HAT) PbII cation to regular PbII porphyrin complexes allowed a stereoselective incorporation of the N‐core bound cation, and an allosterically controlled Newton’s cradle‐like motion of the two PbII ions also emerged from such bimetallic complexes. In this contribution, we have extended this work to other ligands and metal ions, aiming at understanding the parameters that control the HAT PbII coordination. The nature of the N‐core bound metal ion (ZnII, CdII), the influence of the deprotonation state of the overhanging COOH group and the presence of a neutral ligand on the opposite side (exogenous or intramolecular), have been examined through 1H NMR spectroscopic experiments with the help of radiocrystallographic structures and DFT calculations. Single and bis‐strap ligands have been considered. They all incorporate a COOH group hung over the N‐core on one side. For the bis‐strap ligands, either an ester or an amide group has been introduced on the other side. In the presence of a base, the mononuclear ZnII or CdII complexes incorporate the carbonyl of the overhanging carboxylate as apical ligand, decreasing its availability for the binding of a HAT PbII. An allosteric effector (e.g., 4‐dimethylaminopyridine (DMAP), in the case of a single‐strap ligand) or an intramolecular ligand (e.g., an amide group), strong enough to compete with the carbonyl of the hung COO?, is required to switch the N‐core bound cation to the opposite side with concomitant release of the COO?, thereby allowing HAT PbII complexation. In the absence of a base, ZnII or CdII binds preferentially the carbonyl of the intramolecular ester or amide groups in apical position rather than that of the COOH. This better preorganization, with the overhanging COOH fully available, is responsible for a stronger binding of the HAT PbII. Thus, either allosteric or acid–base control is achieved through stereoselective metalation of ZnII or CdII. In the latter case, according to the deprotonation state of the COOH group, the best electron‐donating ligand is located on one or the other side of the porphyrin (COO?>CONHR>COOR>COOH): the lower affinity of COOH for ZnII and CdII, the higher for a HAT PbII. These insights provide new opportunities for the elaboration of innovative bimetallic molecular switches.  相似文献   
89.
On doubling metric measure spaces endowed with a strongly local regular Dirichlet form, we show some characterisations of pointwise upper bounds of the heat kernel in terms of global scale-invariant inequalities that correspond respectively to the Nash inequality and to a Gagliardo–Nirenberg type inequality when the volume growth is polynomial. This yields a new proof and a generalisation of the well-known equivalence between classical heat kernel upper bounds and relative Faber–Krahn inequalities or localised Sobolev or Nash inequalities. We are able to treat more general pointwise estimates, where the heat kernel rate of decay is not necessarily governed by the volume growth. A crucial role is played by the finite propagation speed property for the associated wave equation, and our main result holds for an abstract semigroup of operators satisfying the Davies–Gaffney estimates.  相似文献   
90.
Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its widespread use, the analytical determination and characterization of nanosized metal oxides is not as straightforward as the comparatively easy-to-detect metallic nanoparticles (e.g., silver or gold). This study presents the method development and the results of the determination of tissue titanium (Ti) levels after treatment of rats with the nanosized TiO2. Total Ti levels were chosen to evaluate the presence and distribution of TiO2 nanoparticles. A procedure consisting of incubation with a mixture of nitric acid (HNO3) and hydrofluoric acid (HF), and heating was developed to digest tissues and TiO2 nanomaterials in order to determine the total Ti content by inductively coupled plasma mass spectrometry (ICPMS). For the inter-laboratory comparison, altogether four laboratories analyzed the same samples upon digestion using the available ICPMS equipment. A major premise for any toxicokinetic study is the possibility to detect the chemical under investigation in biological samples (tissues). So, the study has to be performed with a dose high enough to allow for subsequent tissue level measurement of the chemical under investigation. On the other hand, dose of the chemical applied should not induce over toxicity in the animal as this may affect its absorption, distribution, metabolism, and excretion. To determine a non-toxic TiO2 dosage, an acute toxicity study in rats was performed, and the organs obtained were evaluated for the presence of Ti by ICPMS. Despite the differences in methodology and independent of the sample preparation and the ICPMS equipment used, the results obtained for samples with Ti concentrations >4 μg Ti/g tissue agreed well.
Figure
Major Ti concentrations in micrograms per gram of organ as determined by different laboratories.  相似文献   
[首页] « 上一页 [4] [5] [6] [7] [8] 9 [10] [11] [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号