首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   618篇
  免费   19篇
  国内免费   1篇
化学   473篇
晶体学   1篇
力学   3篇
数学   80篇
物理学   81篇
  2023年   8篇
  2022年   7篇
  2021年   9篇
  2020年   6篇
  2019年   8篇
  2018年   3篇
  2017年   4篇
  2016年   9篇
  2015年   10篇
  2014年   12篇
  2013年   32篇
  2012年   30篇
  2011年   41篇
  2010年   22篇
  2009年   14篇
  2008年   30篇
  2007年   33篇
  2006年   36篇
  2005年   30篇
  2004年   23篇
  2003年   37篇
  2002年   25篇
  2000年   4篇
  1999年   8篇
  1998年   7篇
  1996年   12篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   8篇
  1991年   9篇
  1990年   4篇
  1989年   5篇
  1988年   8篇
  1987年   3篇
  1986年   6篇
  1985年   12篇
  1984年   10篇
  1982年   15篇
  1981年   10篇
  1980年   5篇
  1979年   9篇
  1978年   11篇
  1977年   6篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1968年   2篇
  1936年   2篇
  1932年   2篇
排序方式: 共有638条查询结果,搜索用时 31 毫秒
61.
62.
Biopharmaceutical manufacturing requires high investments and long-term production planning. For large biopharmaceutical companies, planning typically involves multiple products and several production facilities. Production is usually done in batches with a substantial set-up cost and time for switching between products. The goal is to satisfy demand while minimising manufacturing, set-up and inventory costs. The resulting production planning problem is thus a variant of the capacitated lot-sizing and scheduling problem, and a complex combinatorial optimisation problem. Inspired by genetic algorithm approaches to job shop scheduling, this paper proposes a tailored construction heuristic that schedules demands of multiple products sequentially across several facilities to build a multi-year production plan (solution). The sequence in which the construction heuristic schedules the different demands is optimised by a genetic algorithm. We demonstrate the effectiveness of the approach on a biopharmaceutical lot sizing problem and compare it with a mathematical programming model from the literature. We show that the genetic algorithm can outperform the mathematical programming model for certain scenarios because the discretisation of time in mathematical programming artificially restricts the solution space.  相似文献   
63.
The β-lactams are the most important class of antibiotics in clinical use. Their lethal targets are the transpeptidase domains of penicillin binding proteins (PBPs), which catalyze the cross-linking of bacterial peptidoglycan (PG) during cell wall synthesis. The transpeptidation reaction occurs in two steps, the first being formation of a covalent enzyme intermediate and the second involving attack of an amine on this intermediate. Here we use defined PG substrates to dissect the individual steps catalyzed by a purified E. coli transpeptidase. We demonstrate that this transpeptidase accepts a set of structurally diverse D-amino acid substrates and incorporates them into PG fragments. These results provide new information on donor and acceptor requirements as well as a mechanistic basis for previous observations that noncanonical D-amino acids can be introduced into the bacterial cell wall.  相似文献   
64.
A series of Werner complexes featuring the tridentate ligand smif, that is, 1,3-di-(2-pyridyl)-2-azaallyl, have been prepared. Syntheses of (smif)(2)M (1-M; M = Cr, Fe) were accomplished via treatment of M(NSiMe(3))(2)(THF)(n) (M = Cr, n = 2; Fe, n = 1) with 2 equiv of (smif)H (1,3-di-(2-pyridyl)-2-azapropene); ortho-methylated ((o)Mesmif)(2)Fe (2-Fe) and ((o)Me(2)smif)(2)Fe (3-Fe) were similarly prepared. Metatheses of MX(2) variants with 2 equiv of Li(smif) or Na(smif) generated 1-M (M = Cr, Mn, Fe, Co, Ni, Zn, Ru). Metathesis of VCl(3)(THF)(3) with 2 Li(smif) with a reducing equiv of Na/Hg present afforded 1-V, while 2 Na(smif) and IrCl(3)(THF)(3) in the presence of NaBPh(4) gave [(smif)(2)Ir]BPh(4) (1(+)-Ir). Electrochemical experiments led to the oxidation of 1-M (M = Cr, Mn, Co) by AgOTf to produce [(smif)(2)M]OTf (1(+)-M), and treatment of Rh(2)(O(2)CCF(3))(4) with 4 equiv Na(smif) and 2 AgOTf gave 1(+)-Rh. Characterizations by NMR, EPR, and UV-vis spectroscopies, SQUID magnetometry, X-ray crystallography, and DFT calculations are presented. Intraligand (IL) transitions derived from promotion of electrons from the unique CNC(nb) (nonbonding) orbitals of the smif backbone to ligand π*-type orbitals are intense (ε ≈ 10,000-60,000 M(-1)cm(-1)), dominate the UV-visible spectra, and give crystals a metallic-looking appearance. High energy K-edge spectroscopy was used to show that the smif in 1-Cr is redox noninnocent, and its electron configuration is best described as (smif(-))(smif(2-))Cr(III); an unusual S = 1 EPR spectrum (X-band) was obtained for 1-Cr.  相似文献   
65.
Phosphorylation of ddC and 3TC was efficiently performed on soluble poly(ethylene glycol) support. The corresponding 5'-monophosphate derivatives were obtained by oxidation of the support bound 5'-H-phosphonate intermediates. Then, di- and triphosphorylations were carried out using a carbonyldiimidazole activation step followed by nucleophilic substitution with suitable phosphate salts. Trivalent phosphorus chemistry appeared as a good alternative for monophosphate synthesis of acid-sensitive 2',3'-dideoxynucleosides.  相似文献   
66.
Far- and mid-infrared multiple photon dissociation spectroscopy has been employed to study both the structure and surface reactivity of isolated cationic rhodium clusters with surface-adsorbed nitrous oxide, Rh(n)N(2)O(+) (n = 4-8). Comparison of experimental spectra recorded using the argon atom tagging method with those calculated using density functional theory (DFT) reveals that the nitrous oxide is molecularly bound on the rhodium cluster via the terminal N-atom. Binding is thought to occur exclusively on atop sites with the rhodium clusters adopting close-packed structures. In related, but conceptually different experiments, infrared pumping of the vibrational modes corresponding with the normal modes of the adsorbed N(2)O has been observed to result in the decomposition of the N(2)O moiety and the production of oxide clusters. This cluster surface chemistry is observed for all cluster sizes studied except for n = 5. Plausible N(2)O decomposition mechanisms are given based on DFT calculations using exchange-correlation functionals. Similar experiments pumping the Rh-O stretch in Rh(n)ON(2)O(+) complexes, on which the same chemistry is observed, confirm the thermal nature of this reaction.  相似文献   
67.
68.
Rate coefficients and/or mechanistic information are provided for the reaction of Cl‐atoms with a number of unsaturated species, including isoprene, methacrolein ( MACR ), methyl vinyl ketone ( MVK ), 1,3‐butadiene, trans‐2‐butene, and 1‐butene. The following Cl‐atom rate coefficients were obtained at 298 K near 1 atm total pressure: k(isoprene) = (4.3 ± 0.6) × 10?10cm3 molecule?1 s?1 (independent of pressure from 6.2 to 760 Torr); k( MVK ) = (2.2 ± 0.3) × 10?10 cm3 molecule?1 s?1; k( MACR ) = (2.4 ± 0.3) × 10?10 cm3 molecule?1 s?1; k(trans‐2‐butene) = (4.0 ± 0.5) × 10?10 cm3 molecule?1 s?1; k(1‐butene) = (3.0 ± 0.4) × 10?10 cm3 molecule?1 s?1. Products observed in the Cl‐atom‐initiated oxidation of the unsaturated species at 298 K in 1 atm air are as follows (with % molar yields in parentheses): CH2O (9.5 ± 1.0%), HCOCl (5.1 ± 0.7%), and 1‐chloro‐3‐methyl‐3‐buten‐2‐one (CMBO, not quantified) from isoprene; chloroacetaldehyde (75 ± 8%), CO2 (58 ± 5%), CH2O (47 ± 7%), CH3OH (8%), HCOCl (7 ± 1%), and peracetic acid (6%) from MVK ; CO (52 ± 4%), chloroacetone (42 ± 5%), CO2 (23 ± 2%), CH2O (18 ± 2%), and HCOCl (5%) from MACR ; CH2O (7 ± 1%), HCOCl (3%), acrolein (≈3%), and 4‐chlorocrotonaldehyde (CCA, not quantified) from 1,3‐butadiene; CH3CHO (22 ± 3%), CO2 (13 ± 2%), 3‐chloro‐2‐butanone (13 ± 4%), CH2O (7.6 ± 1.1%), and CH3OH (1.8 ± 0.6%) from trans‐2‐butene; and chloroacetaldehyde (20 ± 3%), CH2O (7 ± 1%), CO2 (4 ± 1%), and HCOCl (4 ± 1%) from 1‐butene. Product yields from both trans‐2‐butene and 1‐butene were found to be O2‐dependent. In the case of trans‐2‐butene, the observed O2‐dependence is the result of a competition between unimolecular decomposition of the CH3CH(Cl)? CH(O?)? CH3 radical and its reaction with O2, with kdecomp/kO2 = (1.6 ± 0.4) × 1019 molecule cm?3. The activation energy for decomposition is estimated at 11.5 ± 1.5 kcal mol?1. The variation of the product yields with O2 in the case of 1‐butene results from similar competitive reaction pathways for the two β‐chlorobutoxy radicals involved in the oxidation, ClCH2CH(O?)CH2CH3 and ?OCH2CHClCH2CH3. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 334–353, 2003  相似文献   
69.
1-Fluoro-2-pyridone has been used to fluorinata selectively enamines and Grignard reagents under mild conditions.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号