首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
  国内免费   1篇
化学   44篇
数学   1篇
物理学   28篇
  2022年   1篇
  2021年   5篇
  2020年   10篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2002年   5篇
  2001年   6篇
  1998年   1篇
  1996年   1篇
排序方式: 共有73条查询结果,搜索用时 17 毫秒
21.
22.
Infrared (IR) studies have been carried out on porous silicon samples to infer on the changes in the surface bonding in the porous silicon (PS) layer due to chloride (Cl) and subsequent fluoride (F) ion exposures with respect to time. It is observed that silicon hydride linkages decreases and silicon oxide linkages increases with time of exposure to HCl, suggesting a possible oxidation of the porous layer. IR study revealed the formation of SiO (silanones) bonds. A possible mechanism for the formation of silanones from SiOH species has been proposed to explain the observation. We also observed a saturation of silicon oxide groups with complete disappearance of silicon hydride peaks indicating the complete conversion of silicon hydride to oxides. Furthermore on exposure to F, the IR spectrum showed a rapid destruction of silicon oxygen linkages.  相似文献   
23.
The detection and imaging of Zn2+ in biological samples are of paramount interest owing to the role of this cation in physiological functions. This is possible only with molecular probes that specifically bind to Zn2+ and result in changes in emission properties. A “turn‐on” emission or shift in the emission color upon binding to Zn2+ should be ideal for in vivo imaging. In this context, ratiometric and near‐IR probes are of particular interest. Therefore, in the area of chemosensors or molecular probes, the design of fluorophores that allow ratiometric sensing or imaging in the near‐IR region is attracting the attention of chemists. The purpose of this Focus Review is to highlight recent developments in this area and stress the importance of further research for future applications.  相似文献   
24.
RK Singh  RK Mohanta  R Hippler  R Shanker 《Pramana》2002,58(3):499-519
Development of a new lectron-recoil ion/photon coincidence setup for investigating some of the electron induced collision processes, such as electron bremsstrahlung, electron backscattering, innershell excitation and multiple ionization of target atoms/molecules in bombardment of electrons having energies from 2.0 keV to 30.0 keV with solid and gaseous targets is described. The new features include the use of a compact multipurpose scattering chamber, a time-of-flight spectrometer for detection of multiply charged target ions, a 45°-parallel plate electrostatic analyzer for measuring energy and angle of the ejected electrons, a room temperature high resolution Si-PIN photo diode X-ray detector for counting the collisionally induced photons, a coincidence data acquisition system consisting of a 200 MHz Pentium based 8K-multichannel analyzer and a standard network of a fast/slow coincidence electronics. In particular, the details of design, fabrication and assembly of indigenous components employed in the setup are presented. Selected experiments planned with the setup are mentioned and briefly discussed. A report on performance, optimization, efficiency, time resolution etc. of the time-of-flight (TOF) spectrometer and that of the 45°-parallel plate electrostatic analyzer (PPEA) is presented. Test spectra of electron-recoil ion coincidences, energy distribution of ejected electrons and characteristic plus non-characteristic X-ray spectrum are illustrated to exhibit the satisfactory performance of the developed setup.  相似文献   
25.
Recent experimental data on 125I has revealed several interesting structural features. These include the observation of a three quasiparticle band, prolate and oblate deformed bands, signature inversion in the yrast positive-parity band and identification of the unfavoured πh 11/2 band showing very large signature splitting. In the present work, particle-rotor-model calculations have been performed for the πh 11/2 band, using an axially symmetric deformed Nilsson potential. The calculations reproduce the experimental results well and predict a moderate prolate quadrupole deformation of about 0.2 for the band.  相似文献   
26.
27.
28.
The objective of this study is to synthesize ZnO and Mg doped ZnO (Zn1−xMgxO) nanoparticles via the sol-gel method, and characterize their structures and to investigate their biological properties such as antibacterial activity and hemolytic potential.Nanoparticles (NPs) were synthesized by the sol-gel method using zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and magnesium acetate tetrahydrate (Mg(CH3COO)2.4H2O) as precursors. Methanol and monoethanolamine were used as solvent and sol stabilizer, respectively. Structural and morphological characterizations of Zn1−xMgxO nanoparticles were studied by using XRD and SEM-EDX, respectively. Photocatalytic activities of ZnO and selected Mg-doped ZnO (Zn1−xMgxO) nanoparticles were investigated by degradation of methylene blue (MeB). Results indicated that Mg doping (both 10% and 30%) to the ZnO nanoparticles enhanced the photocatalytic activity and a little amount of Zn0.90 Mg0.10 O photocatalyst (1.0 mg/mL) degraded MeB with 99% efficiency after 24 h of irradiation under ambient visible light. Antibacterial activity of nanoparticles versus Escherichia coli ( E. coli ) was determined by the standard plate count method. Hemolytic activities of the NPs were studied by hemolysis tests using human erythrocytes. XRD data proved that the average particle size of nanoparticles was around 30 nm. Moreover, the XRD results indicatedthat the patterns of Mg doped ZnO nanoparticles related to ZnO hexagonal wurtzite structure had no secondary phase for x ≤ 0.2 concentration. For 0 ≤ x ≤ 0.02, NPs showed a concentration dependent antibacterial activity against E. coli . While Zn0.90Mg0.10 O totally inhibited the growth of E. coli , upper and lower dopant concentrations did not show antibacterial activity.  相似文献   
29.
30.
Deep tissue bioimaging with three‐photon (3P) excitation using near‐infrared (NIR) light in the second IR window (1.0–1.4 μm) could provide high resolution images with an improved signal‐to‐noise ratio. Herein, we report a photostable and nontoxic 3P excitable donor‐π‐acceptor system (GMP) having 3P cross‐section (σ3) of 1.78×10?80 cm6 s2 photon?2 and action cross‐section (σ3η3) of 2.31×10?81 cm6 s2 photon?2, which provides ratiometric fluorescence response with divalent zinc ions in aqueous conditions. The probe signals the Zn2+ binding at 530 and 600 nm, respectively, upon 1150 nm excitation with enhanced σ3 of 1.85×10?80 cm6 s2 photon?2 and σ3η3 of 3.33×10?81 cm6 s2 photon?2. The application of this probe is demonstrated for ratiometric 3P imaging of Zn2+ in vitro using HuH‐7 cell lines. Furthermore, the Zn2+ concentration in rat hippocampal slices was imaged at 1150 nm excitation after incubation with GMP, illustrating its potential as a 3P ratiometric probe for deep tissue Zn2+ ion imaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号