首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1317篇
  免费   61篇
  国内免费   19篇
化学   1035篇
晶体学   8篇
力学   26篇
数学   146篇
物理学   182篇
  2024年   1篇
  2023年   19篇
  2022年   11篇
  2021年   22篇
  2020年   28篇
  2019年   38篇
  2018年   18篇
  2017年   27篇
  2016年   54篇
  2015年   49篇
  2014年   39篇
  2013年   75篇
  2012年   113篇
  2011年   119篇
  2010年   48篇
  2009年   51篇
  2008年   108篇
  2007年   89篇
  2006年   121篇
  2005年   87篇
  2004年   71篇
  2003年   49篇
  2002年   74篇
  2001年   12篇
  2000年   17篇
  1999年   8篇
  1998年   5篇
  1997年   9篇
  1996年   5篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
排序方式: 共有1397条查询结果,搜索用时 203 毫秒
21.
Rate constants for several intermediate steps in the OH‐initiated oxidation of isoprene were determined using laser‐photolysis/laser‐induced fluorescence of OH radicals at total pressures between 3 and 4 Torr at 295 K. The rate constant for decomposition of the hydroxyalkoxy radical was determined to be (3.0 ± 0.5) × 104 s?1 in this pressure range, which is in fair agreement with previous work. The presence of a prompt alkoxy decomposition pathway was also investigated and found to contribute less than 10% to the total hydroxyalkoxy radical decomposition. The rate constant for the reaction of the hydroxyperoxy radical with NO was determined to be (2.5 ± 0.5) × 10?11 cm3 molecule?1 s?1, which is moderately higher than previously reported. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 255–261, 2002  相似文献   
22.
The title compounds, C20H17NO3S, (I), and C19H15NO2S, (II), were prepared by the reaction of benzo[b]thiophene‐2‐carbaldehyde with (3,4,5‐trimethoxyphenyl)acetonitrile and (3,4‐dimethoxyphenyl)acetonitrile, respectively, in the presence of methanolic potassium hydroxide. In (I), the C=C bond linking the benzo[b]thiophene and the 3,4,5‐trimethoxyphenyl units has E geometry, with dihedral angles between the plane of the bridging unit and the planes of the two adjacent ring systems of 5.2 (3) and 13.1 (2)°, respectively. However, in (II), the C=C bond has Z geometry, with dihedral angles between the plane of the bridging unit and the planes of the adjacent benzo[b]thiophene and 3,4‐dimethoxyphenyl units of 4.84 (17) and 76.09 (7)°, respectively. There are no significant intermolecular hydrogen‐bonding interactions in the packing of (I) and (II). The packing is essentially stabilized via van der Waals forces.  相似文献   
23.
Quaternized poly(4‐vinylpyridine) (QPVP) has been incorporated as an anion exchanger into sol‐gel derived silica films for use in a spectroelectrochemical sensor. The preparation, characteristics and performance of these films are described. The films, which are spin‐coated onto the surface of a planar optically transparent electrode, are optically transparent and uniform. Scanning electron microscopy and spectroscopic ellipsometry have been used to examine film structure, thickness and optical properties. These films have been shown both spectroscopically and electrochemically to preconcentrate ferrocyanide, a model analyte for the sensor. The films can be regenerated for multiple measurements by exposure to 1 M KNO3. The effects of polymer molecular weight and storage conditions on film performance are described. The overall response of this film is comparable to the poly(dimethyldiallylammonium chloride)‐silica films previously used for this sensor.  相似文献   
24.
A generic method employing ultrafast liquid chromatography with tandem mass spectrometry (LC/MS/MS) was developed and employed for routine screening of drug candidates for inhibition of five major human cytochrome p450 (CYP) isozymes, CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2. The method utilized a monolithic silica rod column to allow fast flow rates to significantly reduce chromatographic run time. The major metabolites of six CYP-specific probe substrates for the five p450 isoforms were monitored and quantified to determine IC(50) values of five drug compounds against each p450 isozyme. Human liver microsomal incubation samples at each test compound concentration were combined and analyzed simultaneously by the LC/MS/MS method. Each pooled sample containing six substrates and an internal standard was separated and detected in only 24 seconds. The combination of ultrafast chromatography and sample pooling techniques has significantly increased sample throughput and shortened assay turnaround time, allowing a large number of compounds to be screened rapidly for potential p450 inhibitory activity, to aid in compound selection and optimization in drug discovery.  相似文献   
25.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   
26.
27.
28.
Abstract

The purification by column chromatography of a phenol-oxidizing enzyme, mushroom tyrosinase, was investigated using solid phase adsorbents designed to have specific affinity for the enzyme. Sepharose 4B, aminophenyl-bearing porous glass, and p-aminobenzylcellulose were chemically modified to introduce phenolic, catecholic, or benzoic groups on the polymer surface. The resulting preparations were tested for their effectiveness in separating tyrosinase from an impure protein mixture. The phenolic and benzoic polymers displayed no specific affinity for tyrosinase. Aminophenyl glass, with or without an attached phenolic group, adsorbed appreciable quantities of protein nonspecif-ically, thus complicating studies of its tyrosinase affinity properties. Dopamine, a dihydroxyphenyl derivative, was bound to Sepharose and was found to be effective in retaining tyrosinase at pH 5.5; elution of the enzyme by washing at pH 8.8 resulted in its purification by a factor of 10 to 14. Enzymatic oxidation of the adsorbent limited the number of purification cycles which could be carried out on a single column.  相似文献   
29.
The catalytic activity of ruthenium(II) bis(diimine) complexes cis‐[Ru(6,6′‐Cl2bpy)2(OH2)2](Z)2 ( 1 , Z = CF3SO3; 2 , Z = (3,5‐(CF3)2C6H3)4B, i.e. BArF) and cis‐[Ru(4,4′‐Cl2bpy)2(OH2)2](Z)2 ( 3 , Z = CF3SO3; 4 , Z = BArF) for the hydrogenation and/or the hydrogenolysis of furfural (FFR) and furfuryl alcohol (FFA) was investigated. The molecular structures of cis‐[Ru(4,4′‐Cl2bpy)2(CH3CN)2](CF3SO3)2 ( 3 ′) and dimeric cis‐[(Ru(4,4′‐Cl2bpy)2Cl)2](BArF)2 ( 5 ) were characterized by X‐ray crystallography. The structures are consistent with the anticipated reduction in steric hindrance about the ruthenium centers in comparison with corresponding complexes containing 6,6′‐Cl2bpy ligands. While compounds 1 , 2 , 3 , 4 are all active and highly selective catalysts for the hydrogenation of FFR to FFA under modest reaction conditions, 3 and 4 showed decreased activity. This is best explained in terms of reduced Lewis acidity of the Ru2+ centers and reduced steric hindrance about the metal centers of catalysts 3 and 4 . cis‐[Ru(6,6′‐Cl2bpy)2(OH2)2](BArF)2 ( 2 ) also displayed high catalytic efficiency for the hydrogenation of FFA to tetrahydrofurfuryl alcohol. Presumably, this is because coordination of C═C bonds of FFA to the ruthenium center is poorly inhibited by non‐coordinating BArF counterions. Interestingly, cis‐[Ru(6,6′‐Cl2bpy)2(OH2)2](CF3SO3)2 ( 1 ) showed some catalytic activity in ethanol for the hydrogenolysis of FFA to 2‐methylfuran, albeit with fairly modest selectivity. Nonetheless, these results indicate that ruthenium(II) bis(diimine) complexes need to be further explored as catalysts for the hydrogenolysis of C―O bonds of FFR, FFA, and related compounds. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号