首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1897篇
  免费   42篇
  国内免费   9篇
化学   1402篇
晶体学   23篇
力学   43篇
数学   121篇
物理学   359篇
  2024年   6篇
  2023年   14篇
  2022年   20篇
  2021年   72篇
  2020年   37篇
  2019年   39篇
  2018年   63篇
  2017年   37篇
  2016年   89篇
  2015年   65篇
  2014年   94篇
  2013年   132篇
  2012年   116篇
  2011年   208篇
  2010年   103篇
  2009年   92篇
  2008年   78篇
  2007年   88篇
  2006年   92篇
  2005年   107篇
  2004年   91篇
  2003年   61篇
  2002年   37篇
  2001年   17篇
  2000年   17篇
  1999年   24篇
  1998年   3篇
  1997年   3篇
  1996年   12篇
  1995年   9篇
  1994年   6篇
  1993年   5篇
  1992年   12篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1979年   3篇
  1978年   11篇
  1977年   3篇
  1976年   4篇
  1975年   7篇
  1974年   4篇
  1972年   7篇
  1971年   5篇
排序方式: 共有1948条查询结果,搜索用时 18 毫秒
111.
112.
The gas–liquid partitioning behavior of major odorants (acetic acid, propionic acid, isobutyric acid, n-butyric acid, i-valeric acid, n-valeric acid, hexanoic acid, phenol, p-cresol, indole, skatole, and toluene (as a reference)) commonly found in microbially digested wastewaters was investigated by two experimental approaches. Firstly, a simple vaporization method was applied to measure the target odorants dissolved in liquid samples with the aid of sorbent tube/thermal desorption/gas chromatography/mass spectrometry. As an alternative method, an impinger-based dynamic headspace sampling method was also explored to measure the partitioning of target odorants between the gas and liquid phases with the same detection system. The relative extraction efficiency (in percent) of the odorants by dynamic headspace sampling was estimated against the calibration results derived by the vaporization method. Finally, the concentrations of the major odorants in real digested wastewater samples were also analyzed using both analytical approaches. Through a parallel application of the two experimental methods, we intended to develop an experimental approach to be able to assess the liquid-to-gas phase partitioning behavior of major odorants in a complex wastewater system. The relative sensitivity of the two methods expressed in terms of response factor ratios (RFvap/RFimp) of liquid standard calibration between vaporization and impinger-based calibrations varied widely from 981 (skatole) to 6,022 (acetic acid). Comparison of this relative sensitivity thus highlights the rather low extraction efficiency of the highly soluble and more acidic odorants from wastewater samples in dynamic headspace sampling.  相似文献   
113.
Chemistry of Natural Compounds - One new and seven known secondary metabolites 1–8 were isolated, and the nematocidal and insecticidal activities of major compounds from Tanacetum...  相似文献   
114.
Journal of Analytical Chemistry - A reliable, easy, and reproducible method was developed for the quantification of λ-cyhalothrin and malathion residues in desert locust. For the extraction, a...  相似文献   
115.
Controllable tailoring of metal-free/carbon-based nanostructures tends an encouraging way to enhance the bifunctional activity of electrodes, but a great challenge owing to the sluggish kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, a facile tempted-defects assisted fractionation strategy is presented to synthesize N, S, and O tri-doped metal-free catalyst (DE-TDAP). Due to this effective tempted-defects and heteroatoms interlinking in DE-TDAP, it delivers the lowest overpotential toward both the OER (346 mV) and HER (154 mV) at 10 mA cm?2. Remarkably, the DE-TDAP-electrode carries only a cell voltage of 1.81 V at 10 mA cm?2 for overall water splitting and long-term stability. Considerably, the density functional theory (DFT) calculation exposes that the tailored-defects in tri-doped interlinking could enhance bifunctional catalytic performance devising from lower Gibbs free energy of OER/HER intermediates on active sites. This struggle henceforth provides a perceptive understanding of the synergetic principles of heteroatom-interlinking-tailoring nanostructures in water splitting.  相似文献   
116.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   
117.
The Friedel–Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron–palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a–3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a–3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.  相似文献   
118.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
119.
This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.  相似文献   
120.
A low energy radioactive beam of polarized 8Li has been used to observe the vortex lattice near the surface of superconducting NbSe2. The inhomogeneous magnetic-field distribution associated with the vortex lattice was measured using depth-resolved beta-detected NMR. Below Tc, one observes the characteristic line shape for a triangular vortex lattice which depends on the magnetic penetration depth and vortex core radius. The size of the vortex core varies strongly with the magnetic field. In particular, in a low field of 10.8 mT, the core radius is much larger than the coherence length. The possible origin of these giant vortices is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号