首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24496篇
  免费   716篇
  国内免费   141篇
化学   17139篇
晶体学   232篇
力学   561篇
综合类   1篇
数学   3425篇
物理学   3995篇
  2022年   106篇
  2021年   223篇
  2020年   344篇
  2019年   323篇
  2018年   214篇
  2017年   206篇
  2016年   484篇
  2015年   422篇
  2014年   533篇
  2013年   1126篇
  2012年   1154篇
  2011年   1479篇
  2010年   739篇
  2009年   625篇
  2008年   1228篇
  2007年   1315篇
  2006年   1275篇
  2005年   1250篇
  2004年   1057篇
  2003年   938篇
  2002年   896篇
  2001年   377篇
  2000年   394篇
  1999年   302篇
  1998年   283篇
  1997年   322篇
  1996年   387篇
  1995年   292篇
  1994年   277篇
  1993年   327篇
  1992年   281篇
  1991年   259篇
  1990年   233篇
  1989年   198篇
  1988年   221篇
  1987年   227篇
  1986年   198篇
  1985年   282篇
  1984年   328篇
  1983年   221篇
  1982年   286篇
  1981年   308篇
  1980年   236篇
  1979年   258篇
  1978年   268篇
  1977年   243篇
  1976年   225篇
  1975年   212篇
  1974年   232篇
  1973年   207篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Sturm–Liouville equations will be considered where the boundary conditions depend rationally on the eigenvalue parameter. Such problems apply to a variety of engineering situations, for example to the stability of rotating axles. Classesof these problems will be isolated with a rather rich spectral structure, for example oscillation, comparison and completeness properties analogous to thoseof the ‘usual’ Sturm–Liouville problem which has constant boundary conditions.In fact it will be shown how these classes can be converted into each other, andinto the ‘usual’ Sturm–Liouville problem, by means of transformations preserving all but finitely many eigenvalues. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
42.
43.
44.
This is the second in a two-part series of articles in which we analyze a system similar in structure to the well-known Zakharov equations from weak plasma turbulence theory, but with a nonlinear conservation equation allowing finite time shock formation. In this article we analyze the incompressible limit in which the shock speed is large compared to the underlying group velocity of the dispersive wave (a situation typically encountered in applications). After presenting some exact solutions of the full system, a multiscale perturbation method is used to resolve several basic wave interactions. The analysis breaks down into two categories: the nonlinear limit and the linear limit, corresponding to the form of the equations when the group velocity to shock speed ratio, denoted by ε, is zero. The former case is an integrable limit in which the model reduces to the cubic nonlinear Schrödinger equation governing the dispersive wave envelope. We focus on the interaction of a “fast” shock wave and a single hump soliton. In the latter case, the ε=0 problem reduces to the linear Schrödinger equation, and the focus is on a fast shock interacting with a dispersive wave whose amplitude is cusped and exponentially decaying. To motivate the time scales and structure of the shock-dispersive wave interactions at lowest orders, we first analyze a simpler system of ordinary differential equations structurally similar to the original system. Then we return to the fully coupled partial differential equations and develop a multiscale asymptotic method to derive the effective leading-order shock equations and the leading-order modulation equations governing the phase and amplitude of the dispersive wave envelope. The leading-order interaction equations admit a fairly complete analysis based on characteristic methods. Conditions are derived in which: (a) the shock passes through the soliton, (b) the shock is completely blocked by the soliton, or (c) the shock reverses direction. In the linear limit, a phenomenon is described in which the dispersive wave induces the formation of a second, transient shock front in the rapidly moving hyperbolic wave. In all cases, we can characterize the long-time dynamics of the shock. The influence of the shock on the dispersive wave is manifested, to leading order, in the generalized frequency of the dispersive wave: the fast-time part of the frequency is the shock wave itself. Hence, the frequency undergoes a sudden jump across the shock layer.In the last section, a sequence of numerical experiments depicting some of the interesting interactions predicted by the analysis is performed on the leading-order shock equations.  相似文献   
45.
We investigate optimal sequencing policies for the expected makespan problem with an unreliable machine, where jobs have to be reprocessed in their entirety if preemptions occur because of breakdowns. We identify a class of uptime distributions under which LPT minimizes expected makespan.  相似文献   
46.
47.
A recently demonstrated [1] in-vacuo template-stripping process is applied to the study of platinum films stripped from ultra-flat silicon-oxide surfaces. Template-stripped (TS) Pt surfaces, prepared with a range of post-deposition annealing times prior to being stripped from the templating surface in an ultra-high vacuum (UHV) environment, are examined by UHV scanning tunneling microscopy (STM). These studies reveal that without post-deposition annealing, TS Pt surfaces are largely made up of poorly-ordered, granular nanostructures undesirable for many applications. The post-deposition annealing treatments explored in the study result in the emergence and continuous growth of large smooth crystallites. Issues with crystallite orientation relative to the TS surface and artefacts arising as a result of the epoxy used in the template-stripping process are presented and discussed in relation to optimizing the template-stripping procedure for specific applications such as self-assembled monolayer (SAM) formation for molecular electronics. PACS 68.37.Ef; 68.47.De; 68.55.Jk; 81.05.Bx; 81.15.Ef  相似文献   
48.
Palladium(II) complexes with N,N‐bis(diphenylphosphino)aniline ligands catalyse the Heck reaction between styrene and aryl bromides, affording stilbenes in good yield. The structures of two of the complexes used as pre‐catalysts have been determined by single‐crystal X‐ray diffraction. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号