首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   5篇
化学   87篇
晶体学   3篇
力学   1篇
物理学   18篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   3篇
  1987年   4篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
101.
The rate constants of the deearboxylation reaction in water of 5-amino-1,3,4-lhiadiazole-2-carboxylic acid (I) to 2-amino-1,3,4-thiadiazole (III) over the pH range O.25-3.91 have been measured and the activation parameters determined. The results obtained have been compared with previous results on the deearboxylalion of 5-amino-1,3,4-oxadiazole-2-earboxylic acid (II) to gain information on the mechanism of the reaction studied.  相似文献   
102.
We optically characterize nanolayer (<150 nm) formation in situ on a silica microsphere in an aqueous environment by simultaneously following the shifts of whispering-gallery modes at two wavelengths. This approach was inspired by layer perturbation theory, which indicates that these two measurements can be used to determine independently both the thickness and the optical dielectric constant. The theory is verified for extreme cases and used to characterize a biophysically relevant hydrogel nanolayer with an extremely small excess refractive index of 0.0012.  相似文献   
103.
Binding properties of native alpha- and beta-cyclodextrin towards some nitrobenzene derivatives have been studied by means of UV-vis spectrophotometry. The former host is able to form complexes having 1:1 and 1:2 stoichiometric ratios with these guests, while only 1:1 complexes are detected with the latter host. A careful analysis of the thermodynamic parameters for complexation equilibria, under the perspective of the enthalpy-entropy compensation effect, reveals that binding abilities of the two different hosts are subject to different features.  相似文献   
104.
105.
The AEgIS experiment (http://aegis.web.cern.ch) will measure the gravitational acceleration g of antihydrogen. Once performed this could be the first direct test of the gravitational interaction between matter and antimatter. In the AEgIS experiment a beam of antihydrogen will travel horizontally along a path of about 1 m trough a moir?? deflectometer followed by a position sensitive detector. The g value will be obtained measuring the vertical displacement of the annihilation patterns. Before producing the beam, several tasks have to be performed mainly involving positron and electron plasma manipulation and particles cooling in Malmberg-Penning traps. The AEgIS experiment is currently under construction at CERN, meanwhile several tests involving particle manipulation and particle cooling are in progress. In this report some experimental results involving diocotron manipulation of plasma will be presented.  相似文献   
106.
Composite membranes, consisting of Nafion and inorganic oxide additives, are frequently discussed alternative materials to overcome the known low conductivity of pure Nafion at temperatures above 100 °C and at low relative humidity. It has been reported that under dry conditions, these membranes show enhanced water uptake and diffusion as compared to filler-free Nafion. This work focuses on the polymer mobility in Nafion/SiO(2) composites and on the impact of the silica particles on the polymer dynamics. [Nafion/(SiO(2))(X)] composite membranes (with X ranging from 0 to 15 wt%) in the dry and wet states were investigated by variable temperature solid-state (19)F NMR spectroscopy. (19)F T(1) and T(1ρ) relaxation times, and NMR lineshapes (linewidths and spinning sideband intensities) were analyzed to get information about the polymer mobility. It is found that Nafion composite membranes, in general, possess a higher mobility as compared to recast Nafion which is in agreement with previous results from conductivity studies. These findings are attributed to the ability of the SiO(2) particles to keep more water inside the composite membranes which also leads to a higher mobility of the polymer component. The results are further supported by the experimental (19)F{(1)H} CP/MAS NMR spectra. It is also shown that the structure of the composite membranes is more stable after dehydration, and possible condensation reactions are diminished in these membranes. In addition, the decrease in ionic exchange capacity after dehydration is less pronounced for the composite membranes as compared to filler-free Nafion.  相似文献   
107.
Radical polymerization of methyl methacrylate with 0.5‐2 mol% of the (meth)acrylate‐substituted oxozirconium and oxotitanium clusters Zr6(OH)4O4(OMc)12 (OMc = methacrylate), Zr4O2(OMc)12, Ti6O4(OEt)8(OMc)8 and Ti4O2(OPri)6(OAcr)6 (OAcr = acrylate) results in an efficient cross‐linking of the organic polymers. The obtained inorganic‐organic hybrid polymers exhibit a higher thermal stability due to inhibited depolymerization reactions. Contrary to undoped poly(methyl methacrylate), the cluster cross‐linked polymers are insoluble but swell in organic solvents. The solvent uptake upon swelling decreases with an increasing amount of polymerized cluster. The impedance spectra of PMMA doped with various proportions of Zr4O2(OMc)12 show that the capacitance of the polymers decreases with an increasing proportion of the cluster. The polymer doped with 2 mol% of Zr4O2(OMc)12 shows an increase in conductivity to 0.9·10−7 S·cm−1 at 74°C.  相似文献   
108.
This report describes the synthesis of a new zeolitic inorganic–organic polymer electrolyte with the formula [FexSny(CN)zClv(C2nH4n+2On+1)K1]. This material is based on poly(ethylene glycol) 600, SnCl4 and K4[Fe(CN)6], and is obtained via a sol→gel transition. Mid and far Fourie than form infrared (FT‐IR) studies, analytical data and X‐ray Photoelectron spectroscopy (XPS) investigations allowed us to conclude that this material is a mixed inorganic–organic network in which Fe and Sn are bonded by CN bridges and tin atoms by PEG 600 bridges. Mid‐infrared (MIR) FT‐IR investigations demonstrated that the polyether chains assume a conformation of the TGT (T = trans, G = gauche) type. Micrographs of the compound obtained by scanning electron microscopy reveal that its morphology resembles a smooth gummy paste. The conductivity of the material at different temperatures was determined by impedance spectroscopy (IS). Results indicated that the material conducts ionically and that its conductivity is strongly influenced by segmental motion of the polymer network. Finally, this network shows a conductivity of ca. 3.7 × 10−5 S/cm at 25 °C. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
109.
Poly[(oligoethylene oxide) ethoxysilane)] ( I ) and poly[(oligoethylene oxide) ethoxysilane)]/(EuCl3)0.67 ( II ) were synthesized by reacting tetraethoxysilane with oligo(ethylene glycol) of molecular weight 400 and oligo(ethylene glycol)400/(EuCl3)0.317, respectively. The products so obtained are very transparent and rubbery. By Fourier transform infrared and Raman spectroscopy studies and by using analytical results it was concluded that these products are crosslinked macromolecular materials where the Si atom is bonded to one OEt group and to three poly(ethylene oxide) 400 chains. Scanning electronic microscopy studies showed that the presence of EuCl3 in polymer host significantly affects the morphology of the material. Laser luminescence investigations on (II) showed that Eu3+ ion in the polymer host is accommodated in two different types of sites having a distorted C2v symmetry. Moreover, the ionic conductivity of these systems was investigated and the data were satisfactorily fitted by the empirical Vogel Tamman Fulcher equation. At 70°C the conductivities of ( I ) and ( II ) were 9 × 10−6 and 14.3 × 10−6 Ω−1 cm−1 respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号