首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   1篇
化学   91篇
晶体学   1篇
数学   2篇
物理学   35篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   7篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   12篇
  2010年   1篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1969年   1篇
排序方式: 共有129条查询结果,搜索用时 234 毫秒
71.
The nature of the chiral phase transition in lattice QCD is studied for the cases of 2, 3 and 6 flavors with degenerate Wilson quarks, mainly on a lattice with the temporal direction extensionN t=4. We find that the chiral phase transition is continuous for the case of 2 flavors, while it is of first order for 3 and 6 flavors.  相似文献   
72.
Novel donor–acceptor dyads containing [2.2]- and [3.3]paracyclophane (PCP) as the bridging moiety were synthesized and used to effectively fabricate dye-sensitized hydrogen production systems. All the prepared compounds had a phenothiazine and a cyanoacrylic acid/pyridinyl acrylonitrile moiety acting as an electron donor and acceptor, respectively. Although cyclic voltammetry measurements showed similar electron-donating properties among all the synthesized dyads, the lowest absorption energy of the [2.2]PCP moiety was lower than that of the [3.3]PCP one; this was due to its shorter distance between benzene rings, which could effectively drive the charge transfer between the donor and acceptor chromophores. Under visible light (>395 nm), a dyad-loaded photocatalyst in a 0.5 M aqueous glycerol solution generated detectable hydrogen gases. The optimal turnover number and photocurrent order exhibited the same trend as the hydrogen production rate since the suggested number of excited photons played a critical role in hydrogen production.  相似文献   
73.
Heptacene ( 1 ) has been produced via a monoketone precursor, 2 , which was prepared from 1,2,4,5-tetrabromobenzene in nine steps in a total yield of 10 %. Compound 2 was converted to 1 quantitatively by heating at 202 °C. Heptacene exhibited high thermal stability in the solid state without any observable change over two months. To investigate the potential value of 1 as a material for p-type organic field-effect transistors (OFETs), top-contact OFET devices were fabricated by vacuum deposition of 1 onto a hexamethyldisilazane (HMDS)/SiO2/Si substrate. The best hole mobility performance was 2.2 cm2 V−1 s−1. This is the first report of stable heptacene being used in an effective device and examined for its charge carrier properties.  相似文献   
74.
Fully conjugated macrocycles 1a?1c composed of m-diethynylene-phenylene-bridged two dibenzofuran, dibenzothiophene and carbazole units were synthesized via Sonogashira cross coupling reactions under high-diluted condition. These conjugated macrocycles were fully characterized by 1H NMR, 13C NMR, FT-IR, Mass spectroscopies and elemental analysis. Photophysical and redox properties of 1a?1c were investigated by means of UV–vis/fluorescence spectroscopies and cyclic voltammetry, respectively, and those features were compared with those of the corresponding linear phenylethynyldibenzoheterols 11a?11c. Furthermore, their structural and electronic insights were studied by theoretical calculations at the B3LYP/cc-pVDZ//B3LYP/6-31G(d) level of theory.  相似文献   
75.
76.
77.
78.
With the aid of the extreme resolving power of Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR/MS), we have developed a metabolomics platform for high-throughput metabolic profiling and metabolite candidate identification integrating a data-processing system, the Dr.DMASS program (), and a metabolite-species database, KNApSAcK (). We discuss the potential of this FT-ICR/MS-based metabolic profiling scheme as a general metabolomics tool by clarification of plant metabolic disorders and specific metabolite accumulation patterns caused by herbicidal enzyme inhibitors.  相似文献   
79.
The hydrogen evolution reaction using semiconductor photocatalysts has been significantly improved by cocatalyst loading. However, there are still many speculations regarding the actual role of the cocatalyst. Now a photocatalytic hydrogen evolution reaction pathway is reported on a cocatalyst site using TiO2 nanosheets doped with Rh at Ti sites as one‐atom cocatalysts. A hydride species adsorbed on the one‐atom Rh dopant cocatalyst site was confirmed experimentally as the intermediate state for hydrogen evolution, which was consistent with the results of density functional theory (DFT) calculations. In this system, the role of the cocatalyst in photocatalytic hydrogen evolution is related to the withdrawal of photo‐excited electrons and stabilization of the hydride intermediate species; the presence of oxygen vacancies induced by Rh facilitate the withdrawal of electrons and stabilization of the hydride.  相似文献   
80.
Coherent addition of two injection-locked Nd:YAG lasers has been performed. A maximum output power of 4.4 W and addition efficiency of 0.94 was achieved, which is the highest power-coupling efficiency ever reported. It was shown experimentally that the frequency and intensity noise level of the coherently-added laser are the same as those of a single injection-locked laser. In particular, no additional intensity noise was observed above the relaxation oscillation frequency of the slave laser, which is suitable for use as the light source for a future gravitational wave detector. The frequency noise of the coherently-added laser was suppressed to 1×10-4 Hz/ by controlling that of the master laser, and the intensity noise was also suppressed to 1×10-8 / by controlling the intensity of pump lasers used for the slave lasers. Received: 11 April 2001 / Revised version: 20 June 2001 / Published online: 19 September 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号