首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
化学   2篇
力学   1篇
数学   6篇
物理学   18篇
  2015年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1998年   2篇
  1986年   1篇
排序方式: 共有27条查询结果,搜索用时 637 毫秒
11.
The occurrence of oscillating combustion and combustion instability has led to resurgence of interest in the causes, mechanisms, suppression, and control of combustion noise. Noise generated by enclosed flames is of greater practical interest but is more complicated than that by open flames, which itself is not clearly understood. Studies have shown that different modes of combustion, premixed and non-premixed, differ in their sound generation characteristics. However, there is lack of understanding of the region bridging these two combustion modes. This study investigates sound generation by partially premixed flames. Starting from a non-premixed flame, air was gradually added to achieve partial premixing while maintaining the fuel flow rate constant. Methane, ethylene, and ethane partially premixed flames were studied with hydrogen added for flame stabilization. The sound pressure generated by methane partially premixed flames scales with M5 compared to M3 for turbulent non-premixed methane flames. Also, the sound pressure generated by partially premixed flames of ethane and ethylene scales as M4.5. With progressive partial premixing, spectra level increases at all frequencies with a greater increase in the high-frequency region compared to the low-frequency region; flames develop a peak and later a constant level plateau in the low frequency region. The partially premixed flames of methane, ethylene, and ethane generate a similar SPL as a function of equivalence ratio when the fuel volume flow rate is matched. However, when fuel mass flow rate is matched, the ethane and ethylene flames produce a similar SPL, which is lower than that produced by the methane flame.  相似文献   
12.
The contact pressure on the vocal fold surface during high pitch or amplitude voice production is believed to be one major source of phonotrauma. Models for the quantitative estimate of the contact pressure may be valuable for prevention and treatment. Various indirect and minimally invasive approaches have been purported to estimate contact pressure. But the accuracy of these methods has not yet been objectively verified in controlled laboratory settings. In the present study, two indirect approaches for the estimation of the contact pressure were investigated. One is based on a Hertzian impact model, and the other on a finite element model. A probe microphone was used for direct measurements of the contact pressure and verifications of the indirect approaches. A silicone replica of human vocal folds was used as a test bed. Consistent contact pressure estimations were obtained using all three methods. The advantages and disadvantages of each approach for eventual clinical applications are described.  相似文献   
13.
Predicted air traffic growth is expected to double the number of flights over the next 20 years. If current means of air traffic control are maintained, airspace capacity will reach its limits. The need for increasing airspace capacity motivates improved aircraft trajectory planning in 4D (space+time). In order to generate sets of conflict-free 4D trajectories, we introduce a new nature-inspired algorithm: the light propagation algorithm (LPA). This algorithm is a wavefront propagation method that yields approximate geodesic solutions (minimal-in-time solutions) for the path planning problem, in the particular case of air-traffic congestion. In simulations, LPA yields encouraging results on real-world traffic over France while satisfying the specific constraints in air-traffic management.  相似文献   
14.
Notched spoilers have been observed to be more effective than uniform spoilers to suppress the flow-induced cavity resonance of vehicles with open sunroofs. In this study, a few mechanisms possibly involved in buffeting suppression from notched spoilers were investigated experimentally and numerically. One objective was to investigate the spatial coherence and phase of the wall pressure fluctuations downstream of notched spoilers in comparison with the same quantities for uniform spoilers. Another objective was to gather detailed measured data to allow the verification of computer simulations of the flow over the notched spoiler. Experiments were performed to measure the velocity and wall pressure fields downstream of spoilers mounted on the rigid floor of a closed test section wind tunnel. Efforts were made to reproduce the spoiler and wind tunnel geometry and boundary conditions of the experimental setup in the numerical simulations. The numerical investigation used the Lattice Boltzmann Method (LBM), with the so-called Very Large Eddy Simulation (VLES) viscosity turbulence model. The results of the numerical investigation were in satisfactory agreement with measured data at low frequencies, where buffeting is expected to occur. The results suggested that the notches break down the homogeneity of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. This decreased the cross-stream coherence of the surface pressure field, thereby reducing the magnitude of the net equivalent excitation force acting over the surface downstream.  相似文献   
15.
Voice production involves sound generation by a confined jet flow through an orifice (the glottis) with a time-varying area. Predictive models of speech production are usually based on the so-called quasi-steady approximation. The flow rate through the time-varying orifice is assumed to be the same as a sequence of steady flows through stationary orifices for wall geometries and flow boundary conditions that instantaneously match those of the dynamic, nonstationary problem. Either the flow rate or the pressure drop can then be used to calculate the radiated sound using conventional acoustic radiation models. The quasi-steady approximation allows complex unsteady flows to be modeled as steady flows, which is more cost effective. It has been verified for pulsating open jet flows. The quasi-steady approximation, however, has not yet been rigorously validated for the full range of flows encountered in voice production. To further investigate the range of validity of the quasi-steady approximation for voice production applications, a dynamic mechanical model of the larynx was designed and built. The model dimensions approximated those of human vocal folds. Airflow was supplied by a pressurized, quiet air storage facility and modulated by a driven rubber orifice. The acoustic pressure of waves radiated upstream and downstream of the orifice was measured, along with the orifice area and other time-averaged flow variables. Calculated and measured radiated acoustic pressures were compared. A good agreement was obtained over a range of operating frequencies, flow rates, and orifice shapes, confirming the validity of the quasi-steady approximation for a class of relevant pulsating jet flows.  相似文献   
16.
Sound generation by confined stationary jets is of interest to the study of voice and speech production, among other applications. The generation of sound by low Mach number, confined, stationary circular jets was investigated. Experiments were performed using a quiet flow supply, muffler-terminated rigid uniform tubes, and acrylic orifice plates. A spectral decomposition method based on a linear source-filter model was used to decompose radiated nondimensional sound pressure spectra measured for various gas mixtures and mean flow velocities into the product of (1) a source spectral distribution function; (2) a function accounting for near field effects and radiation efficiency; and (3) an acoustic frequency response function. The acoustic frequency response function agreed, as expected, with the transfer function between the radiated acoustic pressure at one fixed location and the strength of an equivalent velocity source located at the orifice. The radiation efficiency function indicated a radiation efficiency of the order (kD)2 over the planar wave frequency range and (kD)4 at higher frequencies, where k is the wavenumber and D is the tube cross sectional dimension. This is consistent with theoretical predictions for the planar wave radiation efficiency of quadrupole sources in uniform rigid anechoic tubes. The effects of the Reynolds number, Re, on the source spectral distribution function were found to be insignificant over the range 20002.5. The influence of a reflective open tube termination on the source function spectral distribution was found to be insignificant, confirming the absence of a feedback mechanism.  相似文献   
17.
The purpose of this study was to develop methods for visualizing the sound radiation from aeroacoustic sources in order to identify their source strength distribution, radiation patterns, and to quantify the performance of noise control solutions. Here, cylindrical Near-field Acoustical Holography was used for that purpose. In a practical holographic measurement of sources comprising either partially correlated or uncorrelated subsources, it is necessary to use a number of reference microphones so that the sound field on the hologram surface can be decomposed into mutually incoherent partial fields before holographic projection. In this article, procedures are described for determining the number of reference microphones required when visualizing partially correlated aeroacoustic sources; performing source nonstationarity compensation; and applying regularization. The procedures have been demonstrated by application to a ducted fan. Holographic tests were performed to visualize the sound radiation from that source in its original form. The system was then altered to investigate the effect of two modifications on the fan's sound radiation pattern: first, leaks were created in the fan and duct assembly, and second, sound absorbing material was used to line the downstream duct section. Results in all three cases are shown at the blade passing frequency and for a broadband noise component. In the absence of leakage, both components were found to exhibit a dipole-like radiation pattern. Leakage was found to have a strong influence on the directivity of the blade passing tone. The increase of the flow resistance caused by adding the acoustical lining resulted in a nearly symmetric reduction of sound radiation.  相似文献   
18.
Three-way interactions between sound waves in the subglottal and supraglottal tracts, the vibrations of the vocal folds, and laryngeal flow were investigated. Sound wave propagation was modeled using a wave reflection analog method. An effective single-degree-of-freedom model was designed to model vocal-fold vibrations. The effects of orifice geometry changes on the flow were considered by enforcing a time-varying discharge coefficient within a Bernoulli flow model. The resulting single-degree-of-freedom model allowed for energy transfer from flow to structural vibrations, an essential feature usually incorporated through the use of higher order models. The relative importance of acoustic loading and the time-varying flow resistance for fluid-structure energy transfer was established for various configurations. The results showed that acoustic loading contributed more significantly to the net energy transfer than the time-varying flow resistance, especially for less inertive supraglottal loads. The contribution of supraglottal loading was found to be more significant than that of subglottal loading. Subglottal loading was found to reduce the net energy transfer to the vocal-fold oscillation during phonation, balancing the effects of the supraglottal load.  相似文献   
19.
Feng  LG 《数学理论与应用》2000,20(4):83-84
一、TheProblem .Letf(x) =ax2 bx c ax2 px q,wherea >0 ,b2 - 4ac≤ 0andp2 - 4aq≤ 0 .OurProblemis“Whetherdoesminx∈Rf(x)exis?Moreover ,,ifminx∈Rf(x)exists,thenminx∈Rf(x)=?andinthiscasex =?” .Naturally ,weknowthatminx∈Rf(x)existsfromtheknowledgeofmathematicalanalysis.Also,wecangivethe…  相似文献   
20.
The influence of key dimensional parameters, motion constraints, and boundary conditions on the modal properties of an idealized, continuum model of the vocal folds was investigated. The Ritz method and the finite element method were used for the analysis. The model's vibratory modes were determined to be most sensitive to changes in the anterior-posterior length of the vocal fold model, due to the influence of three-dimensional stress components acting in the transverse plane. Anterior/ posterior boundary conditions were found to have a significant influence on the vibratory response. Overestimation of modal frequencies resulted when vibration of the structure was restricted to the transverse plane. The overestimation of each modal frequency was proportional to the ratio of longitudinal to transverse Young's modulus, and was significant for ratio values less than 20.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号