首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6240篇
  免费   368篇
  国内免费   46篇
化学   4293篇
晶体学   71篇
力学   265篇
数学   938篇
物理学   1087篇
  2023年   48篇
  2022年   93篇
  2021年   212篇
  2020年   150篇
  2019年   262篇
  2018年   222篇
  2017年   161篇
  2016年   327篇
  2015年   206篇
  2014年   329篇
  2013年   626篇
  2012年   390篇
  2011年   395篇
  2010年   279篇
  2009年   270篇
  2008年   286篇
  2007年   258篇
  2006年   248篇
  2005年   202篇
  2004年   178篇
  2003年   155篇
  2002年   197篇
  2001年   82篇
  2000年   123篇
  1999年   70篇
  1998年   57篇
  1997年   58篇
  1996年   43篇
  1995年   41篇
  1994年   48篇
  1993年   44篇
  1992年   37篇
  1991年   28篇
  1990年   26篇
  1989年   40篇
  1988年   36篇
  1987年   30篇
  1986年   22篇
  1985年   39篇
  1984年   35篇
  1983年   29篇
  1982年   31篇
  1981年   28篇
  1980年   23篇
  1979年   20篇
  1978年   20篇
  1977年   12篇
  1976年   18篇
  1975年   19篇
  1973年   10篇
排序方式: 共有6654条查询结果,搜索用时 875 毫秒
971.
Abstract

The use of atrane complexes as hydrolytic precursors enables the homogeneous incorporation of manganese (25 ≤ Si/Mn ≤ 48) throughout the porous walls of the nanoparticles of a surfactant-templated bimodal mesoporous silica (UVM-7). The subsequent leaching of the manganese nanodomains allows adding controlled microporosity to the host silica framework. The resulting final silica material presents three pore systems structured at different length scales: interparticle textural-type macroporosity (ca. 43.2 nm), ordered intraparticle mesoporosity (ca. 2.63 nm; after template removal), and well-dispersed microporosity (< 2 nm; as consequence of the lixiviation of the Mn-rich domains). The good dispersion of the guest element (Mn) in the silica intermediate provided by the atrane route is responsible for the disordered but regular microporosity achieved.  相似文献   
972.
Dodecanoyl isothiocyanate 1 was utilized for the construction of thioureido, 2-thioxo-2,3-dihydroquinazolin-4(1H)-one, benzo[d]-1,3-thiazin-4(H)-one and 3-amino quinazolin-4(3H)-one derivatives 2, 3, 4, and 5 respectively. However, N′-(2-cyanoacetyl) dodecanehydrazide 6 was also used as a key starting material for the construction of a variety of new pyrazolone, pyrazole, thiadiazole, pyridazine, chromeno[2,3-c]pyrazole, and dithiolane derivatives 7, 9, 12, 15, 18, and 20, respectively. The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 1H NMR, and mass spectra). Some of the newly synthesized compounds bearing heterocyclic moieties were tested for antioxidant activity as reflected in their ability to inhibit oxidation in rat brain and kidney homogenates using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) inhibition. Also, in vitro anticancer activity was examined using the standard (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) (MTT) method against a panel of two human tumor cell lines namely; hepatocellular carcinoma HepG2 and mammary gland breast cancer MCF-7. Compounds 12 and 16b exhibited the highest activities as antioxidant and antitumor agents. Meanwhile, compounds 7 and 20 showed moderate activities and the rest of the tested compounds showed weak activities.  相似文献   
973.
An electrochemical nanoaptasensor is described that is based on the use of a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs). An aptamer (Apt) against trinitrotoluene (TNT) was then immobilized on the AgNPs. The addition of TNT to the modified GCE leads to decrease in peak current (typically measured at a potential of ?0.45 V vs. Ag/AgCl) of riboflavin which acts as an electrochemical probe. Even small changes in the surface (as induced by binding of Apt to TNT) alter the interfacial properties. As a result, the LOD is lowered to 33 aM, and the dynamic range extends from 0.1 fM to 10 μM without sacrificing specificity.
Graphical abstract Schematic presentation of a nanoaptasensor which is based on a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs) and aptamer (Apt). It was applied to the detection of 2,4,6-trinitrotoluene (TNT) with the help of riboflavin (RF) as a redox probe.
  相似文献   
974.
The authors describe a method for functionalization of gold nanoparticles (AuNPs) with the supramolecular host molecule, curcubit[7]uril (CB[7]) which can bind rhodamine B (RhB). The fluorescence of RhB is quenched by the AuNPs via surface energy transfer. On addition of ATP, a dimeric RhB-ATP complex is formed and RhB is pushed out of CB[7]. Hence, fluorescence increases by a factor of 8. This fluorescence recovery effect has been utilized to develop a new detection scheme for ATP. The assay, measured at fluorescence excitation and emission wavelengths of 500 nm and 574 nm respectively, works in the 0.5–10 μM concentration range and has a 100 nM detection limit. The method is not interfered by UTP, GTP, CTP, TTP, ascorbic acid and glutathione.
Graphical abstract Schematic of a method for determination of ATP in the 500 nM to 10 μM concentration range by using fluorescence recovery after surface energy transfer (SET) between rhodamine B (RhB) and gold nanoparticles capped with curcubit[7]uril (CB[7]).
  相似文献   
975.
In this work, a new long-life alkali ion source is proposed that is based on alkali halide salts doped in nano-γ-alumina (Al2O3). Depending on the polarity, the ion source produces both alkali and halide ions. The source was characterized using different techniques such as scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), fourier transform infrared (FT-IR), and ion mobility spectrometry (IMS). SEM images confirm a strong interaction between the alkali halide (MX) and nano-γ-alumina. The average particle size of the doped nanoparticles was calculated to be 44 nm by TEM. Formation of new phases (KAlCl2O and K3AlF6) was confirmed by XRD and that of Al–O–K group in the synthesized particles by FT-IR. Alkali and halide ion peaks were observed by IMS in the positive and negative modes, respectively. The lifetime of the ion source for different alkali halides was measured to range from 216 to 960 h. The total ion current emitted from the source was about 2 µA, while it was 12 nA at the collector plate of the IMS. Finally, application of the new source in ion mobility spectrometry was demonstrated by observing ion mobility spectra of compounds ionized via cation and anion attachment reaction.  相似文献   
976.
In the present work, catecholase activity is presented. The complexes were prepared by condensation of the organic ligand pyrazolyl L 1 L 4 and copper(II) ion in situ. The pyrazolyl compounds L 1 L 4 used in this study are: L 1 is (3,5-dimethyl-pyrazol-1-ylmethyl)-(4-methyl-pyridin-2-yl)-pyrazol-1-ylmethyl-amine; L 2 is 1-{4-[(3,5-dimethyl-pyrazol-1-ylmethyl)-pyrazol-1-ylmethyl-amino]-phenyl}-ethanone; L 3 is 1-{4-[(3,5-dimethyl-pyrazol-1-ylmethyl)-[1,2,4]triazol-1-ylmethyl-amino]-phenyl}-ethanone, and L 4 is 2-[(3,5-dimethyl-pyrazol-1-ylmethyl)-[1,2,4]triazol-1-ylmethyl-amino]-6-methyl-pyrimidin-4-ol, and copper ions salts Cu(II) are (Cu(CH3COO)2, CuCl2, Cu(NO3)2 and CuSO4). In order to determine factors influencing the catecholase activity of these complexes, the effect of ligand nature, ligand concentration, nature of solvent and nature of counter anion has been studied. The best activity of catechol oxidation is given by the combination formed by one equivalent of ligand L 2 and one equivalent of Cu(CH3COO)2 in methanol solvent which is equal to 9.09 µmol L?1 min?1. The Michaelis–Menten model is applied for the best combination, to obtain the kinetic parameters, and we proposed the mechanism for oxidation reaction of catecholase.  相似文献   
977.
A highly sensitive sensor based on Ni nanoparticles/poly (1,2-diaminoanthraquinone) modified electrode was fabricated at glassy carbon (GC) electrode (Ni/PDAAQ@GC ME) using cyclic voltammetry technique. The incorporation of nickel (II) ions nanoparticles (Ni NPs) followed by anodic polarization process was achieved. Surface morphologies of both PDAAQ@GC ME and Ni/PDAAQ@GC MEs were studied by scanning electron microscope. Ni/PDAAQ@GC ME was tested for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) by square wave voltammetry technique. The ME showed excellent electrocatalytic activity toward electrooxidation of these biomolecules in their single, binary and ternary systems in alkaline 0.1 M NaOH solutions. Experiment revealed that the low detection limits (LOD) for AA, DA and UA were 0.11, 0.072 and 1.2 µM in single system, respectively, and 0.069, 0.29 and 0.12 µM in ternary system, respectively.  相似文献   
978.
The efficient, 12–14 step (LLS) total synthesis of (?)‐halenaquinone has been achieved. Key steps in the synthetic sequence include: (a) proline sulfonamide‐catalyzed, Yamada–Otani reaction to establish the C6 all‐carbon quaternary stereocenter, (b) multiple, novel palladium‐mediated oxidative cyclizations to introduce the furan moiety, and (c) oxidative Bergman cyclization to form the final quinone ring.  相似文献   
979.
Using polymer hydrogels and nanocomposites hydrogels still promising materials for many applications. Polyvinyl pyrrolidone (PVP) has been used with various polymers synthetic and natural for different applications. In this study PVP and hydroxyl ethyl methacrylate (HEMA) copolymer hydrogels were prepared by the aid of gamma radiation and the PVP/HEMA nanocomposite hydrogels were obtained by in situ adsorption and reduction method of iron salts and silver nitrates (AgNO3) to form PVP/HEMA-Fe3O4 and PVP/HEMA-Ag nanocomposites. The prepared hydrogels and the formed nanoparticles were studied by various techniques; FTIR, TEM, SEM and also the gel content and swelling behavior were evaluated. The prepared hydrogels and nanocomposites hydrogels were examined as drug delivery systems for Ciprofloxacin HCl as model drug. The PVP/HEMA-Fe3O4 nanocomposite gave the suitable load and release behavior towards Ciprofloxacin HCl.  相似文献   
980.
Shewanella oneidensis MR‐1 gains energy by extracellular electron transfer to solid surfaces. They employ c‐type cytochromes in two Mtr transmembrane complexes, forming a multiheme wire for electron transport across the cellular outer membrane. We investigated electron‐ and hole‐transfer mechanisms in the external terminal of the two complexes, MtrC and MtrF. Comparison of computed redox potentials with previous voltammetry experiments in distinct environments (isolated and electrode‐bound conditions of PFV or in vivo) suggests that these systems function in different regimes depending on the environment. Analysis of redox potential shifts in different regimes indicates strong coupling between the hemes via an interplay between direct Coulomb and indirect interactions through local structural reorganization. The latter results in the screening of Coulomb interactions and explains poor correlation of the strength of the heme‐to‐heme interactions with the distance between the hemes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号