首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1031篇
  免费   53篇
  国内免费   6篇
化学   902篇
晶体学   2篇
力学   22篇
数学   27篇
物理学   137篇
  2023年   13篇
  2021年   15篇
  2020年   29篇
  2019年   18篇
  2018年   13篇
  2017年   8篇
  2016年   24篇
  2015年   19篇
  2014年   28篇
  2013年   30篇
  2012年   47篇
  2011年   67篇
  2010年   26篇
  2009年   33篇
  2008年   47篇
  2007年   48篇
  2006年   62篇
  2005年   66篇
  2004年   49篇
  2003年   30篇
  2002年   48篇
  2001年   43篇
  2000年   29篇
  1999年   19篇
  1997年   11篇
  1996年   6篇
  1995年   5篇
  1994年   12篇
  1993年   12篇
  1992年   18篇
  1991年   13篇
  1990年   17篇
  1989年   14篇
  1988年   13篇
  1987年   12篇
  1986年   8篇
  1985年   13篇
  1982年   6篇
  1981年   8篇
  1979年   13篇
  1978年   4篇
  1977年   8篇
  1976年   12篇
  1975年   6篇
  1974年   15篇
  1973年   9篇
  1972年   5篇
  1971年   5篇
  1968年   4篇
  1967年   7篇
排序方式: 共有1090条查询结果,搜索用时 296 毫秒
61.
Flexible and dynamic porous coordination polymers (PCPs) with well‐defined nanospaces composed of chromophoric organic linkers provide a scaffold for encapsulation of versatile guest molecules through noncovalent interactions. PCPs thus provide a potential platform for molecular recognition. Herein, we report a flexible 3D supramolecular framework {[Zn(ndc)(o‐phen)]?DMF}n (o‐phen=1,10‐phenanthroline, ndc=2,6‐napthalenedicarboxylate) with confined nanospaces that can accommodate different electron‐donating aromatic amine guests with selective turn‐on emission signaling. This system serves as a molecular recognition platform through an emission‐readout process. Such unprecedented tunable emission with different amines is attributed to its emissive charge‐transfer (CT) complexation with o‐phen linkers. In certain cases this CT emission is further amplified by energy transfer from the chromophoric linker unit ndc, as evidenced by single‐crystal X‐ray structural characterization.  相似文献   
62.
The selective formation of dialkyl formamides through photochemical CO2 reduction was developed as a means of utilizing CO2 as a C1 building block. Photochemical CO2 reduction catalyzed by a [Ru(bpy)2(CO)2]2+ (bpy: 2,2′‐bipyridyl)/[Ru(bpy)3]2+/Me2NH/Me2NH2+ system in CH3CN selectively produced dimethylformamide. In this process a ruthenium carbamoyl complex ([Ru(bpy)2(CO)(CONMe2)]+) formed by the nucleophilic attack of Me2NH on [Ru(bpy)2(CO)2]2+ worked as the precursor to DMF. Thus Me2NH acted as both the sacrificial electron donor and the substrate, while Me2NH2+ functioned as the proton source. Similar photochemical CO2 reductions using R2NH and R2NH2+ (R=Et, nPr, or nBu) also afforded the corresponding dialkyl formamides (R2NCHO) together with HCOOH as a by‐product. The main product from the CO2 reduction transitioned from R2NCHO to HCOOH with increases in the alkyl chain length of the R2NH. The selectivity between R2NCHO and HCOOH was found to depend on the rate of [Ru(bpy)2(CO)(CONR2)]+ formation.  相似文献   
63.
Single-ligand-based electronically conductive porous coordination polymers/metal–organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.  相似文献   
64.
Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10?5 S cm?1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g?1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.  相似文献   
65.
66.
A multiply charged molecule expands the range of a mass window and is utilized as a precursor to provide rich sequence coverage; however, reflectron time-of-flight mass spectrometer has not been well applied to the product ion analysis of multiply charged precursor ions. Here, we demonstrate that the range of the mass-to-charge ratio of measurable product ions is limited in the cases of multiply charged precursor ions. We choose C6F6 as a model molecule to investigate the reactions of multiply charged molecular cations formed in intense femtosecond laser fields. Measurements of the time-of-flight spectrum of C6F6 by changing the potential applied to the reflectron, combined with simulation of the ion trajectory, can identify the species detected behind the reflectron as the neutral species and/or ions formed by the collisional charge transfer. Moreover, the metastable ion dissociations of doubly and triply charged C6F6 are identified. The detection of product ions in this manner can diminish interference by the precursor ion. Moreover, it does not need precursor ion separation before product ion analysis. These advantages would expand the capability of mass spectrometry to obtain information about metastable ion dissociation of multiply charged species.  相似文献   
67.
68.
69.
Utilization of a metalloligand, ([Cu(2,4-pydca)2(H2O)].2Et3NH) (1) (2,4-pydca = pyridine-2,4-dicarboxylate), as a building unit provides a novel porous coordination polymer, ([ZnCu(2,4-pydca)2(H2O)3(DMF)].DMF)n (2), in which the Zn(II) ion at the node of the network acts as a linker and the Cu(II) ion in the channel wall is available for guest-coordination.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号