首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2210篇
  免费   99篇
  国内免费   25篇
化学   1551篇
晶体学   21篇
力学   87篇
综合类   3篇
数学   192篇
物理学   480篇
  2024年   8篇
  2023年   16篇
  2022年   26篇
  2021年   110篇
  2020年   75篇
  2019年   81篇
  2018年   73篇
  2017年   58篇
  2016年   103篇
  2015年   84篇
  2014年   90篇
  2013年   182篇
  2012年   176篇
  2011年   190篇
  2010年   91篇
  2009年   93篇
  2008年   93篇
  2007年   88篇
  2006年   99篇
  2005年   75篇
  2004年   73篇
  2003年   63篇
  2002年   57篇
  2001年   23篇
  2000年   19篇
  1999年   15篇
  1998年   10篇
  1997年   14篇
  1996年   12篇
  1995年   11篇
  1994年   14篇
  1993年   13篇
  1992年   13篇
  1991年   12篇
  1990年   11篇
  1989年   7篇
  1988年   9篇
  1987年   9篇
  1986年   14篇
  1985年   13篇
  1984年   12篇
  1983年   10篇
  1982年   19篇
  1981年   13篇
  1980年   9篇
  1979年   6篇
  1978年   4篇
  1977年   11篇
  1976年   6篇
  1962年   3篇
排序方式: 共有2334条查询结果,搜索用时 15 毫秒
81.
Microwave irradiation (MI) process characteristically enables extremely rapid “in‐core” heating of dipoles and ions, in comparison to conventional thermal (conductance) process of heat transfer. During the process of nanoparticles synthesis, MI both modulates functionality behaviors as well as dynamic of reaction in favorable direction. So, MI providing a facile, favorable and alternative approach during nanoparticles synthesis nanoparticles with enhanced catalytic performances. Although, conventionally used reducing and capping reagents of synthetic origin, are usually environmentally hazardous and toxic for living organism. But, in absence of suitable capping agent; stability, shelf life and catalytic activity of metallic nanoparticles adversely affected. However, polymeric templates which emerged as suitable choice of agent for both reducing and capping purposes; bearing additional advantages in terms of catalyst free one step green synthesis process with high degree of biosafety and efficiency. Another aspect of current works was to understand role of process variables in growth mechanism and catalytic performances of microwave processed metallic nanoparticles, as well as comparison of these parameters with conventional heating method. However, due to poor prediction ability with previously published architect OFAT (One factor at a time) design with these nanoparticles as well as random selection of process variables with their different levels, such comparison couldn't be possible. Hence, using gum Ghatti (Anogeissus latifolia) as a model bio‐template and under simulated reaction conditions; architect of QbD design systems were integrated in microwave processed nanoparticles to establish mechanistic role these variables. Furthermore, in comparison to conventional heating; we reported well validated mathematical modeling of process variables on characteristic of nanoparticles as well as synthesized gold nanoparticles of desired and identical dimensions, in both thermal and microwave‐based processes. Interestingly, despite of identical dimension, MI processed gold nanoparticles bearing higher efficiency (kinetic rate) against remediation of hazardous nitro dye (4‐nitrophenol), into safer amino (4‐aminophenol) analogues.  相似文献   
82.
The structure and properties of amides are of tremendous interest in organic synthesis and biochemistry. Traditional amides are planar and the carbonyl group non-electrophilic due to nN→π*C=O conjugation. In this study, we report electrophilicity scale by exploiting 17O NMR and 15N NMR chemical shifts of acyclic twisted and destabilized acyclic amides that have recently received major attention as precursors in N-C(O) cross-coupling by selective oxidative addition as well as precursors in electrophilic activation of N-C(O) bonds. Most crucially, we demonstrate that acyclic twisted amides feature electrophilicity of the carbonyl group that ranges between that of acid anhydrides and acid chlorides. Furthermore, a wide range of electrophilic amides is possible with gradually varying carbonyl electrophilicity by steric and electronic tuning of amide bond properties. Overall, the study quantifies for the first time that steric and electronic destabilization of the amide bond in common acyclic amides renders the amide bond as electrophilic as acid anhydrides and chlorides. These findings should have major implications on the fundamental properties of amide bonds.  相似文献   
83.
84.
85.
Two novel amino acids imine ligands (H2L1 and H2L2) have been synthesized using green condensation reaction from 2‐[3‐Amino‐5‐(2‐hydroxy‐phenyl)‐5‐methyl‐1,5‐dihydro‐[1, 2, 4]triazol‐4‐yl]‐3‐(1H‐indol‐3‐yl)‐propionic acid with benzaldehyde/p‐flouro benzaldehyde (1:1 molar ratio) in the presence of lemon juice as a natural acidic catalyst in aqueous medium. Their transition metal complexes have been prepared in a molar ratio (1:1). Characterization of the ligands and complexes using elemental analysis, spectroscopic studies, 1HNMR, 13CNMR, and thermal analysis has been reported. E*, ΔH*, ΔS* and ΔG* thermodynamic parameters, were calculated to throw more light on the nature of changes accompanying the thermal decomposition process of these complexes. The molar conductance measurement of metal complexes showed nonelectrolyte behavior. The metal complexes of the two ligands have tetrahedral geometry with a general molecular structure [M(H2L)Xn], where [(M = Mn (II), Co (II), Cu (II) and Zn (II), X = Cl, n = 2]; M = VO (II), X = SO4, n = 1] for H2L1. [M = Co (II), Cu (II), Zn (II)] for H2L2. Antibacterial activity of the complexes against (Bacillis subtilis, Micrococcus luteus, Escherichia coli), also antifungal activity against (Aspergillus niger, Candida Glabarta, Saccharomyces cerevisiae) have been screened. The results showed that all complexes have antimicrobial activity higher than free ligands. Molecular docking studies results showed that, all the synthesized compounds having minimum binding energy and have good affinity toward the active pocket, thus, they may be considered as good inhibitor of targeting PDB code: 1SC7 (Human DNA Topo‐isomerase I).  相似文献   
86.
Here, we reported on a one‐step fabrication of magnetite Fe3O4 nanoparticles/indium tin oxide (ITO) electrode based on the direct growing of Fe3O4 nanoparticles on the ITO surface by using a solvothermal process. The modified electrode was used as electrochemical methotrexate (MTX) biosensor with high sensitivity based on cyclic voltammetry and square wave voltammetry techniques. The results demonstrated a linear relationship between the MTX concentration and its oxidation current peak over a wide range from 10?5 to 10?14 mole/L with a limit of detection of 0.4×10?15 M based on the square wave voltammetry (SWV) technique. In addition, Fe3O4/ITO electrode showed a good capability for measuring very low concentrations of MTX drug dissolved in human serum solution. Also, Fe3O4/ITO electrode was used for detecting MTX in blood serum samples collected from patients after their treatment with MTX. The prepared electrode showed the higher sensitivity that higher than the Viva‐E instrument, which opens the door for developing a cheap, simple and higher sensitive MTX sensor.  相似文献   
87.
The design of molecular compounds that exhibit flexibility is an emerging area of research. Although a fair amount of success has been achieved in the design of plastic or elastic crystals, realizing multidimensional plastic and elastic bending remains challenging. We report herein a naphthalidenimine–boron complex that showed size-dependent dual mechanical bending behavior whereas its parent Schiff base was brittle. Detailed crystallographic and spectroscopic analysis revealed the importance of boron in imparting the interesting mechanical properties. Furthermore, the luminescence of the molecule was turned-on subsequent to boron complexation, thereby allowing it to be explored for multimode optical waveguide applications. Our in-depth study of the size-dependent plastic and elastic bending of the crystals thus provides important insights in molecular engineering and could act as a platform for the development of future smart flexible materials for optoelectronic applications.  相似文献   
88.
A simple, sensitive and rapid ultra‐high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry method was developed and validated for the quantification of warfarin and 7‐hydroxy warfarin in Sprague Dawley (SD) rats. Animals were administered a single dose of warfarin sodium formulations (crystalline and amorphous) at 12 mg/kg via oral gavage and blood was drawn over a 96‐h time course. Sample process recoveries, matrix effect and analyte stability were determined. The linearity for warfarin and 7‐hydroxy warfarin was from 5 to 2000 ng/mL in blank SD rat plasma. Correlation coefficients (r2) for standard calibration curves were >.98 and analytes quantified within ±15% of target at all calibrator concentrations. The average percent accuracy and precision for intra‐ and inter‐day were 93.7%–113.8% and ≤12.1%, respectively, for warfarin and 7‐hydroxy warfarin, across the quality control standards (5, 10, 500, 1800 and 2000 ng/mL). Acceptable analytical recovery (>55%) was achieved with process efficiencies >41.5% and matrix effects <139.9% over the analytical range. Both analytes were stable in stock solution, autosampler, benchtop and three cycles of freeze–thaw with percent accuracy ≥90.2% and precision (percent relative standard deviation) ≤14%. The validated method was successfully applied to a pre‐clinical bioavailability study of crystalline and amorphous warfarin sodium formulations in SD rats.  相似文献   
89.
Standard field desorption (FD) ionization is implemented under high vacuum condition. In this paper, non‐vacuum FD is performed under a super‐atmospheric pressure environment using untreated tungsten wires as FD emitter, and the ion source was coupled to a commercial linear ion trap mass spectrometer. The operating pressure of the ion source was 6 bars which was high enough to provide sufficient dielectric strength to the working gas so that the high voltage that was required for FD could be applied to the emitter without occurrence of electrical discharge. Non‐volatile sample deposited on the bare tungsten wire FD emitter was heated by flowing direct current through the emitter. Similar to vacuum FD, the formation of conical protrusion of the liquefied sample layer under the strong electric field was also observed. Using the present ion source, high pressure field‐desorption of polar neutral compounds, organic salts and ionic liquids is demonstrated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号