首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79071篇
  免费   367篇
  国内免费   387篇
化学   24851篇
晶体学   799篇
力学   6738篇
数学   32066篇
物理学   15371篇
  2022年   60篇
  2021年   33篇
  2020年   33篇
  2019年   43篇
  2018年   10456篇
  2017年   10280篇
  2016年   6108篇
  2015年   865篇
  2014年   326篇
  2013年   439篇
  2012年   3829篇
  2011年   10546篇
  2010年   5672篇
  2009年   6082篇
  2008年   6631篇
  2007年   8783篇
  2006年   249篇
  2005年   1334篇
  2004年   1564篇
  2003年   1986篇
  2002年   1037篇
  2001年   256篇
  2000年   301篇
  1999年   159篇
  1998年   207篇
  1997年   155篇
  1996年   211篇
  1995年   126篇
  1994年   97篇
  1993年   114篇
  1992年   73篇
  1991年   78篇
  1990年   61篇
  1989年   79篇
  1988年   72篇
  1987年   62篇
  1986年   62篇
  1985年   67篇
  1984年   54篇
  1983年   47篇
  1982年   48篇
  1981年   50篇
  1980年   55篇
  1979年   55篇
  1978年   41篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A novel water-soluble solvatochromic molecule, 7-(dimethylamino)-2-fluorenesulfonate (2,7-DAFS), was prepared by a three-step reaction from 2-nitrofluorene in good overall yield. The pH and solvent effects on the UV-VIS absorption and fluorescence spectra of 2,7-DAFS have been studied. Protonation of the dimethylamino group switches the absorption from intramolecular charge-transfer (ICT) to π → π* transition. The ground state pKa value of 2,7-DAFS was determined as 4.51. The fluorescence spectrum of the excited basic form, *(DAFS), shows a structureless single band with a large Stokes shift, whereas that of the acidic form, *(+HDAFS), exhibits a structured band with a small Stokes shift. The emission intensities of the basic and acidic forms versus pH/Ho plots show stretched sigmoidal curves and indicate that (1) the rate of deprotonation of *(+HDAFS) is comparable to the fluorescence decay of the species, and (2) the efficient proton-induced quenching of *(DAFS) fluorescence occurs. The pKa* was estimated as −1.7 from the fluorescence titration curve. The fluorescence maximum of *(DAFS) is blue-shifted as the polarity of solvent decreases. However, no clear dependency of the emission intensity and spectral half width, and thus fluorescence quantum yield, on the solvent polarity was revealed. It appears that the fluorescence sensitivity of 2,7-DAFS is 15 ∼ 25 times greater than the sensitivity of a widely utilized fluorescent probe, 5-(dimethylamino)-1-naphthalenesulfonate. This higher sensitivity, together with the ease of derivatization, would provide the fluorene-based fluorescent molecules significant advantages for a variety of applications.  相似文献   
992.
The fluorescent probe-aminoderivative of benzanthrone, ABM (developed at Riga Technical University, Riga, Latvia) was used to characterize the membranes of lymphocytes of cancer patients: 46 patients with gastrointestinal diseases, 13 patients having different primary localizations with massive metastases and intoxication. Patients were divided into three groups: (1) with decreased fluorescence intensity, (2) normal fluorescence intensity, (3) increased fluorescence intensity. The lymphocytes distribution among subsets differed between groups, in correspondence to the level of florescence intensity. Surgical treatment affected the main immunological parameters and elevated the functional activity of lymphocytes. In the advanced tumors group, fluorescence intensity correlates with the survival rate. Results suggest that determination of lymphocytes functional activity by ABM can aid evaluation of the immune status in cancer patients.  相似文献   
993.
The value of intrinsic chlorophyll fluorescence polarization, and the intensity in emission spectrum were investigated in leaf segments of Alocasia macrorrhiza under several stress conditions including different temperatures (25–50°C), various concentrations of NaCl (0–250 mM), methyl viologen (MV, 0–25 μM), SDS (0–1.0%) and NaHSO3 (0–80 μM). Fluorescence emission spectrum of leaves at wavelength regions of 500–800 nm was monitored by excitation at 436 nm. The value of fluorescence polarization (P value), as result of energy transfer and mutual orientation between chlorophyll molecules, was determined by excitation at 436 nm and emission at 685 nm. The results showed that elevated temperature and concentrations of salt (NaCl), photooxidant (MV), surfactant (SDS) and simulated SO2 (NaHSO3) treatments all induced a reduction of fluorescence polarization to various degrees. However, alteration of the fluorescence spectrum and emission intensity of F685 and F731 depended on the individual treatment. Increase in temperature and concentration of NaHSO3 enhanced fluorescence intensity mainly at F685, while an increase in MV concentration led to a decrease at both F685 and F731. On the contrary, NaCl and SDS did not cause remarkable change in fluorescence spectrum. Among different treatments, the negative correlation between polarization and fluorescence intensity was found with NaHSO3 treatments only. We concluded that P value being measured with intrinsic chlorophyll fluorescence as probe in leaves is a susceptible indicator responding to changes in environmental conditions. The alteration of P value and fluorescence intensity might not always be shown a functional relation pattern. The possible reasons of differed response to various treatments were discussed.  相似文献   
994.
Li Y  Li M  Xu T 《Journal of fluorescence》2007,17(6):643-648
The difference in time-resolved fluorescence spectrum between the cortical sarcoma and the adjacent normal tissue was studied in both experimental and theoretical ways. The Clinical data were obtained in vivo using a time-resolved fluorescence spectrometer employing a single fiber-optic probe for excitation and detection. Tissue was modeled as s-180 sarcoma tumor surrounded with normal muscle and was mediated by the Palladium-porphyrin photosensitizer (Pd-TCPP). The emitted fluorescence was considered as arising from the tumor tissue or the normal muscle, due to the presence of the photosensitizer. A computational code which could simulating time-resolved fluorescence emission was presented and applied to comparing fluorescence decay of photosensitizer in different stages of tumor growth. In this code the different stages of the tumor was modeled through changing the time τ, the delay of the fluorescence photon emission and z max, the thickness of the tumor. It was found in the in vivo experiment that the fluorescence from tumor tissue decayed more quickly than from the adjacent normal muscle. For the ten rats in the first experiment day, the mean decay constant of tumor T s and normal tissue T n were 554 and 526 μs, respectively. And T s increased with the tumor growth, from 554 μs in the first day to 634 μs in the eighth day while T s kept steady. It was believed that the more adequate oxygen supplied by the normal tissue can more effectively quench the fluorescence and in the normal tissue the photosensitizer lifetime is smaller. As a result the simulated time-resolved fluorescence spectrum of normal tissue showed more quickly decay. And the thickness of the tumor can also delay the fluorescence decay. Both the experimental and simulated results indicated that the germination of the tumor would increase the decay constant of the time-resolved fluorescence spectrum. So decay constant of the tumor tissue spectrum should be larger than that of adjacent normal tissue for the reason of hypoxia and overgrouth. This fact could be of use in the tumor diagnoses.  相似文献   
995.
Poly(ethylene glycol) (PEG) hydrogels have been used to encapsulate fluorescently labeled molecules in order to detect a variety of analytes. The hydrogels are designed with a mesh size that will retain the sensing elements while allowing for efficient diffusion of small analytes. Some sensing assays, however, require a conformational change or binding of large macromolecules, which may be sterically prohibited in a dense polymer matrix. A process of hydrogel microporation has been developed to create cavities within PEG microspheres to contain the assay components in solution. This arrangement provides improved motility for large sensing elements, while limiting leaching and increasing sensor lifetime. Three hydrogel compositions, 100% PEG, 50% PEG, and microporated 100% PEG, were used to create pH-sensitive microspheres that were tested for response time and stability. In order to assess motility, a second, more complex sensor, namely a FITC-dextran/TRITC-Con A glucose-specific assay was encapsulated within the microspheres.  相似文献   
996.
Agkisacutacin isolated from the venom of Agkistrodon acutus is a coagulation factor IX / coagulation factor X-binding protein with marked anticoagulant- and platelet-modulating activities. Ca2+ ion-induced stabilization and refolding of Agkisacutacin have been studied by following fluorescent measurements. Ca2+ ions not only increase the structural stability of agkisacutacin against GdnHCl denaturation, but also induce its refolding. The GdnHCl-induced unfolding of the apo-agkisacutacin and the purified agkisacutacin is a single-step process with no detectable intermediate state. Ca2+ ions play an important role in the stabilization of the structure of agkisacutacin. Ca2+-stabilized agkisacutacin exhibits higher resistance to GdnHCl denaturation than the apo-agkisacutacin. It is possible to induce refolding of the unfolded apo-agkisacutacin merely by adding 1 mM Ca2+ ions without changing the concentration of the denaturant. The kinetic result of Ca2+-induced refolding provides evidences for that agkisacutacin consists of at least two refolding phases and the first phase of Ca2+-induced refolding should involve the formation of the compact Ca2+-binding site regions, and subsequently, the protein undergoes further conformational rearrangements to form the native structure.  相似文献   
997.
Multicolor encoded beads were achieved by incorporating two color core-shell quantum dots (QDs) (CdSe/ZnS) to commercial polystyrene (PS) beads. By controlling the concentration ratios of the two quantum dots (QDs) in doping solutions, a series of codes with different intensity ratios were obtained. Based on the multiple encoded carboxylic modified polystyrene beads, fluorescent dyes labeled antibodies were distinguished successfully on the beads’ surface. It suggests that the encoded beads from this method have the practicability in biological applications and chemical analysis. Hai-Qiao Wang and Zhen-Li Huang authors contribute equally to this work  相似文献   
998.
A new anthracene-based fluorescent PET sensor 1 with a tridentate ionophore of amide/β-amino alcohol displays very good selectivity and sensitivity for Fe3+ (K a = 1.6 × 103 M−1) and Hg2+ (K a = 2.1 × 103 M−1) in CH3CN–H2O (3:7, v/v) with detection limit of 1 μM. More fluorescence enhancement was observed when 1 selectively detected Fe3+ or Hg2+ in CH3CN and its detection limit was up to 0.03 μM.  相似文献   
999.
In this short letter, we describe the effects of low temperature on the Metal-Enhanced Fluorescence (MEF) phenomenon. Fluorophores close to Silver Island Films (SiFs) show on average two- to ten-fold enhancements in their fluorescence signatures at room temperature. However, at 77 K, we have observed that MEF is even more pronounced as compared to an identical glass control sample. We also demonstrate that the further enhancements in MEF occur at low temperature over a range of visible wavelengths for different fluorophores, for both SiFs and 20 nm surface deposited gold colloids.  相似文献   
1000.
Proteoliposomes carrying reconstituted yeast plasma membrane H+-ATPase in their lipid membrane or plasma membrane vesicles are model systems convenient for studying basic electrochemical processes involved in formation of the proton electrochemical gradient (ΔμH +) across the microbial or plant cell membrane. Δψ- and pH-sensitive fluorescent probes were used to monitor the gradients formed between inner and outer volume of the reconstituted vesicles. The Δψ-sensitive fluorescent ratiometric probe oxonol VI is suitable for quantitative measurements of inside-positive Δψ generated by the reconstituted H+-ATPase. Its Δψ response can be calibrated by the K+/valinomycin method and ratiometric mode of fluorescence measurements reduces undesirable artefacts. In situ pH-sensitive fluorescent probe pyranine was used for quantitative measurements of pH inside the proteoliposomes. Calibration of pH-sensitive fluorescence response of pyranine entrapped inside proteoliposomes was performed with several ionophores combined in order to deplete the gradients passively formed across the membrane. Presented model system offers a suitable tool for simultaneous monitoring of both components of the proton electrochemical gradient, Δψ and ΔpH. This approach should help in further understanding how their formation is interconnected on biomembranes and even how transport of other ions is combined to it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号