首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   2篇
  国内免费   1篇
化学   38篇
力学   2篇
数学   20篇
物理学   19篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2013年   7篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   6篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1990年   4篇
  1986年   1篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有79条查询结果,搜索用时 484 毫秒
31.
The modification of a double-focusing mass spectrometer of BE geometry (VG-Analytical ZAB-2F) to permit the field ionization of fast atoms in high Rydberg states is described. Field ionization was achieved by means of a pair of closely spaced, very fine metal meshes with a (kV) potential difference between them. High Rydberg noble gas atoms were generated from their ions by electron transfer from noble gas targets. Also described is a method, involving a field ionization observation, for measuring the net kinetic energy loss associated with the collision-induced neutralization-reionization of polyatomic ions.  相似文献   
32.
Mathematical formulas describing all of the sequences of the chemical elements are derived from double tetrahedron face‐centered cubic lattice model. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   
33.
A key choice in the development of arbitrary Lagrangian‐Eulerian solution algorithms is how to move the computational mesh. The most common approaches are smoothing and relaxation techniques, or to compute a mesh velocity field that produces smooth mesh displacements. We present a method in which the mesh velocity is specified by the irrotational component of the fluid velocity as computed from a Helmholtz decomposition, and excess compression of mesh cells is treated through a noniterative, local spring‐force model. This approach allows distinct and separate control over rotational and translational modes. The utility of the new mesh motion algorithm is demonstrated on a number of 3D test problems, including problems that involve both shocks and significant amounts of vorticity.  相似文献   
34.
The development of antagonists of growth hormone (GH) - releasing hormone (GH-RH) is reviewed. GH-RH antagonists bind with a high affinity to pituitary receptors for GH-RH and inhibit the release of GH in vitro and in vivo. The main applications of GH-RH antagonists would be for tumor therapy. The antitumor effects of GH-RH antagonists are exerted in part indirectly through the inhibition of the secretion of pituitary GH and the reduction in the levels of hepatic insulin like growth factor (IGF-I). However, principal effects of the GH-RH antagonists are exerted directly on tumors. Antagonists of GH-RH inhibit the proliferation of various cancer cell lines in vitro and suppress in vivo the levels and the expression of mRNA for IGF-I and IGF-II in tumors. In many human cancers, the effects of GH-RH antagonists appear to be due to the blockade of the action of tumoral GH-RH. GH-RH ligand is present in various human cancers indicating that it may be an autocrine/paracrine growth factor. Splice variants (SVs) of GH-RH receptors and pituitary type of GH-RH receptors that might mediate effects of tumoral GH-RH and of GH-RH antagonists were demonstrated in many human cancers. This suggests the presence of a stimulatory loop based on GH-RH and SVs or pituitary type of GH-RH receptors in diverse tumors. It was shown that GH-RH antagonists inhibited the growth of various human cancer lines xenografted into nude mice including mammary, ovarian, endometrial and prostate cancers, small cell lung carcinomas (SCLC) and non-SCLC, renal, pancreatic, gastric and colorectal carcinomas, malignant gliomas, osteosarcomas and Non-Hodgkin's lymphomas. Further development of GH-RH antagonists should lead to potential therapeutic agents for various cancers.  相似文献   
35.
36.
Molecular recognition and chemical modification of DNA are important in medicinal chemistry, toxicology, and biotechnology. Historically, natural products have revealed many interesting and unexpected mechanisms for noncovalent DNA binding and covalent DNA modification. The studies reported here characterize the molecular mechanisms underlying the efficient alkylation of duplex DNA by the Streptomyces-derived natural product leinamycin. Previous studies suggested that alkylation of duplex DNA by activated leinamycin (2) is driven by noncovalent association of the natural product with the double helix. This is striking because leinamycin does not contain a classical noncovalent DNA-binding motif, such as an intercalating unit, a groove binder, or a polycation. The experiments described here provide evidence that leinamycin is an atypical DNA-intercalating agent. A competition binding assay involving daunomycin-mediated inhibition of DNA alkylation by leinamycin provided evidence that activated leinamycin binds to duplex DNA with an apparent binding constant of approximately 4.3 ± 0.4 × 10(3) M(-1). Activated leinamycin caused duplex unwinding and hydrodynamic changes in DNA-containing solutions that are indicative of DNA intercalation. Characterization of the reaction of activated leinamycin with palindromic duplexes containing 5'-CG and 5'-GC target sites, bulge-containing duplexes, and 5-methylcytosine-containing duplexes provided evidence regarding the orientation of leinamycin with respect to target guanine residues. The data allow construction of a model for the leinamycin-DNA complex suggesting how a modest DNA-binding constant combines with proper positioning of the natural product to drive efficient alkylation of guanine residues in the major groove of duplex DNA.  相似文献   
37.
Discontinuous Galerkin (DG) methods have been well established for single-material hydrodynamics. However, consistent DG discretizations for non-equilibrium multi-material (more than two materials) hydrodynamics have not been extensively studied. In this work, a novel reconstructed DG (rDG) method for the single-velocity multi-material system is presented. The multi-material system being considered assumes stiff velocity relaxation, but does not assume pressure and temperature equilibrium between the multiple materials. A second-order DG(P1) method and a third-order least-squares based rDG(P1P2) are used to discretize this system in space, and a third-order total variation diminishing (TVD) Runge-Kutta method is used to integrate in time. A well-balanced DG discretization of the non-conservative system is presented and is verified by numerical test problems. Furthermore, a consistent interface treatment is implemented, which ensures strict conservation of material masses and total energy. Numerical tests indicate that the DG and rDG methods are, indeed, the second- and third-order accurate. Comparisons with the second-order finite volume method show that the DG and rDG methods are able to capture the interfaces more sharply. The DG and rDG methods are also more accurate in the single-material regions of the flow. This work focuses on the general multidimensional rDG formulation of the non-equilibrium multi-material system and a study of properties of the method via one-dimensional numerical experiments. The results from this research will be the foundation for a multidimensional high-order rDG method for multi-material hydrodynamics.  相似文献   
38.
The general one-particle spin states are considered. It is shown that information contained in a spin-1/2 state can be recorded in an equivalent form with the help of three mixed completely decoherent qubit states. The density matrix of such a system has the form of the tensor product of three diagonal matrices. The linear operator defined in the space of one-particle spin states generates some transform of the tensor products of the diagonal matrices. We construct this transform in the explicit form.  相似文献   
39.
A quantum mechanical treatment is given of the acousto-optical parametric amplification processes in dielectric crystals when the signal acoustical and idler light waves are amplified in the presence of intensive optical pumping. The approximate Heisenberg equations of motion are found and solved for the creation and annihilation operators of signal and idler modes with due regard for the interaction of these modes with other light and vibratory modes of the crystal (“the thermostat”). It is shown that the thermostat influence results in noise and attenuation effects. These persistent noises are also amplified. If the pumping is not far above the threshold the persistent noises are more important than the initial ones.  相似文献   
40.
Arbitrary superpositions of any two optical coherent states are investigated as realizations of qubits for quantum information processing. Decoherence of these coherent-state qubits is described in detail, and visualized using a suitable adaptive Bloch-sphere. The entanglement that can be created by a beam splitter from these states is quantified, and its decoherence behavior is analyzed.Received: 13 May 2004, Published online: 10 August 2004PACS: 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements - 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bells inequalities, GHZ states, etc.) - 03.67.-a Quantum information  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号