首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   9篇
化学   312篇
晶体学   1篇
力学   2篇
数学   28篇
物理学   123篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   5篇
  2016年   9篇
  2013年   11篇
  2012年   18篇
  2011年   19篇
  2010年   7篇
  2009年   17篇
  2008年   26篇
  2007年   28篇
  2006年   22篇
  2005年   17篇
  2004年   24篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   9篇
  1999年   6篇
  1998年   10篇
  1997年   9篇
  1987年   5篇
  1980年   3篇
  1979年   3篇
  1978年   7篇
  1977年   6篇
  1974年   7篇
  1973年   4篇
  1972年   4篇
  1969年   5篇
  1968年   8篇
  1967年   4篇
  1966年   4篇
  1939年   3篇
  1937年   3篇
  1936年   5篇
  1934年   7篇
  1933年   5篇
  1932年   4篇
  1930年   7篇
  1929年   4篇
  1926年   3篇
  1924年   5篇
  1923年   4篇
  1922年   4篇
  1921年   5篇
  1889年   3篇
  1887年   3篇
  1885年   4篇
排序方式: 共有466条查询结果,搜索用时 15 毫秒
81.
82.
Titanocene complexes with chelating N-heterocyclic ligand bridges react with ferrocenium salts as selective oxidants to afford air-stable cationic complexes and allow the preparation of exceptional mixed valence hexaazatrinaphthylene complexes [(Cp2Ti)3(mu3-HATNMe6)]n+ (1n+) (n=1, 2, 3, 4). Cyclic voltammograms (CV) and differential pulse voltammograms (DPV) show that nine oxidation states of 1 are generated without decomposition. Comproportionation constants Kc have been calculated in order to determine the extent of electronic communication between the titanium centers. The Kc values of the mixed valence states are indicative of uncoupled (14+), moderately coupled (15+), and strongly coupled (1-, 1+, and 12+) systems. Small but significant structural changes occurring upon oxidation of neutral 1 are observed by X-ray structural analysis on 1+-14+. Anion-pi interactions between the electron-deficient central ring of the HATNMe6 moiety and PF6- and BF4- counterions, respectively, are found for 12+, 13+, and 14+. The short cation-anion contacts cause interesting molecular allignments in terms of molecular architecture. For 12+ the assembly of an one-dimensional (1D) polymer is observed. Electrochemical investigations on the mononuclear cationic titanocene complexes [(Cp2Ti)(L)]+ (L=2,2'-biquinoline (2+), 4,4'-dimethyl-2,2'-biquinoline (3+), and 5,8'-dimethyl-2,3'-biquinoxaline (4+)) showed similar oxidation and reduction characteristics among each other. Conversion to monoanionic, neutral, and dicationic states is enabled. As found for the trinuclear compounds 1n+, the molecular structures of 2+-4+ reveal significant differences compared to their neutral parents.  相似文献   
83.
Reactions of tropolone with lead(II) trifluoromethanesulfonate, perchlorate, and nitrate in water/methanol mixtures at pH below 1.0 lead to the formation of three different polymeric lead(II) complexes, [Pb(trop)(CF3SO3)(H2O)]n (1), [Pb3(trop)4(ClO4)2]n (2), and [Pb2(trop)2(NO3)2(CH3OH)]n (3), respectively. On the other hand, if the reactions are performed at pH above 2.0, the dimeric compound [Pb(trop)2]2 (4) is obtained independently of the lead(II) salt used, as long as lead(II) does not form any strong complexes with the counterion. The crystal structures of these compounds have been determined by single-crystal X-ray diffraction. The structure of solid tetrakis(tropolonato)lead(IV), Pb(trop)4 (5), has been studied by means of the EXAFS technique because it was not possible to obtain sufficiently large single crystals. In the polymeric structures, the counterions are coordinated to the lead(II) ions and act as bridges. The tropolonato ligand behaves as a chelating agent and a tri- or tetraconnective bridge. The total coordination number of the lead(II) ion is five in compound 4, seven in 1 and 3, and eight in 2, and the lead(IV) ion in 5 is eight-coordinated. The 6s2 lone electron pair on the lead(II) ion seems to be stereochemically active in all lead(II) complexes studied. All compounds have been characterized by IR spectroscopy as well.  相似文献   
84.
This report describes the synthesis and characterization of metal halide complexes (M = Mn, Fe, Co) supported by a new family of pendant donor-modified alpha-diimine ligands. The donor (N, O, P, S) substituent is linked to the alpha-diimine by a short hydrocarbon spacer forming a tridentate, mer-coordinating ligand structure. The tridentate ligands are assembled from monoimine precursors, the latter being synthesized by selective reaction with one carbonyl group of the alpha-dione. While attempts to separately isolate tridentate ligands in pure form were unsuccessful, metal complexes supported by the tridentate ligand are readily synthesized in-situ, by forming the ligand in the presence of the metal halide, resulting in a metal complex which subsequently crystallizes out of the reaction mixture. Metal complexes with NNN, NNO, NNP and NNS donor sets have been prepared and examples supported by NNN, NNP and NNS ligands have been structurally characterized. In the solid state, NNN and NNP ligands coordinate in a mer fashion and the metal complexes possess distorted square pyramidal structures and high spin (S = 2) electronic configurations. Compounds with NNS coordination environments display a variety of solid state structures, ranging from those with unbound sulfur atoms, including chloride bridged and solvent ligated species, to those with sulfur weakly bound to the metal center. The extent of sulfur ligation depends on the donor ability of the crystallization solvent and the substitution pattern of the arylthioether substituent.  相似文献   
85.
By means of a conformal covariant differentiation process we construct generating systems for conformally invariant symmetric (r, s)–spinors in an arbitrary curved space–time. Extending this method to conformally invariant linear differential operators acting on symmetric spinor fields some classes of such operators are derived.  相似文献   
86.
87.
The antioxidative action of mixtures of phenols, phosphites, HALS, a) and some of their transformation products in various compositions has been studied in the thermo- and photo-oxidation of hydrocarbons and polypropylene under different conditions. In the AIBN-initiated oxidation of hydrocarbons at low temperatures (< 80°C), hindered phenols, hindered aryl phosphites and the nitroxyl derivatives of HALS act antioxidatively when used individually in appropriate concentrations. Secondary HALS do not show any induction period, but a certain retardation of the oxidation process after some reaction time. The inhibiting efficiency of nitroxyls observed cannot be explained completely by the currently accepted action mechanisms of HALS, but is also related to the reaction of the nitroxyls with alkylperoxyl radicals. In mixtures with hindered phenols, HALS have almost no influence on the rate of thermooxidation at low temperatures. Their nitroxyl derivatives, however, always exhibit synergism, most pronounced when both stabilizers are used in equimolar ratios. During the photooxidation phenols lower the efficiency of HALS. The influence of mixtures of stabilizers on the oxidative stability of polypropylene is rather different and depends on the oxidation conditions, the structure, the concentration and the ratio of the stabilizers. Synergistic as well as antagonistic effects are observed. Both aliphatic and aromatic phosphites studied act synergistically when used together and with phenols. This demonstrates that for acting as synergist for phenols, the hydrogen peroxide decomposing capability of the phosphites, but not their chain breaking activity is important. HALS-phosphites and phosphonites, containing amine and phosphorus units in one molecule, are highly effective inhibitors of photo- and thermooxidation and exhibit lower critical antioxidant concentrations and longer induction periods than phosphites alone. They even exceed the efficiency of phenols in many cases. Transformation products of phenolic antioxidants investigated act differently and in many cases contrarily under photo- and thermooxidative conditions. Therefore, they influence the efficiency of stabilizer mixtures also in a different way.  相似文献   
88.
89.
The availability and application of solid-state reference electrodes for potentiometric electrochemical sensors are briefly reviewed. For a long time, considerable efforts have been made to combine solid-state indicator electrodes with equivalent reference electrodes to take advantage of the absence of liquid system components to full capacity. In spite of various suggestions to solve the problem, no type of solid-state reference electrode is so far available with properties completely identical to conventional ones.  相似文献   
90.
The coordination chemistry of solvated Ag(I) and Au(I) ions has been studied in some of the most strong electron-pair donor solvents, liquid and aqueous ammonia, and the P donor solvents triethyl, tri-n-butyl, and triphenyl phosphite and tri-n-butylphosphine. The solvated Ag(I) ions have been characterized in solution by means of extended X-ray absorption fine structure (EXAFS), Raman, and (107)Ag NMR spectroscopy and the solid solvates by means of thermogravimetry and EXAFS and Raman spectroscopy. The Ag(I) ion is two- and three-coordinated in aqueous and liquid ammonia solutions with mean Ag-N bond distances of 2.15(1) and 2.26(1) A, respectively. The crystal structure of [Ag(NH3)3]ClO4.0.47 NH3 (1) reveals a regular trigonal-coplanar coordination around the Ag(I) ion with Ag-N bond distances of 2.263(6) A and a Ag...Ag distance of 3.278(2) A separating the complexes. The decomposition products of 1 have been analyzed, and one of them, [Ag(NH3)2]ClO4, has been structurally characterized by means of EXAFS, showing [Ag(NH3)2] units connected into chains by double O bridges from perchlorate ions; the Ag...Ag distance is 3.01(1) A. The linear bisamminegold(I) complex, [Au(NH3)2]+, is predominant in both liquid and aqueous ammonia solutions, as well as in solid [Au(NH3)2]BF4, with Au-N bond distances of 2.022(5), 2.025(5), and 2.026(7) A, respectively. The solvated Ag(I) ions are three-coordinated, most probably in triangular fashion, in the P donor solvents with mean Ag-P bond distances of 2.48-2.53 A. The Au(I) ions are three-coordinated in triethyl phosphite and tri-n-butylphosphine solutions with mean Au-P bond distances of 2.37(1) and 2.40(1) A, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号