首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1919篇
  免费   95篇
  国内免费   10篇
化学   1553篇
晶体学   22篇
力学   14篇
数学   116篇
物理学   319篇
  2023年   16篇
  2022年   14篇
  2021年   29篇
  2020年   36篇
  2019年   46篇
  2018年   24篇
  2017年   17篇
  2016年   52篇
  2015年   35篇
  2014年   58篇
  2013年   94篇
  2012年   144篇
  2011年   125篇
  2010年   83篇
  2009年   61篇
  2008年   152篇
  2007年   109篇
  2006年   117篇
  2005年   130篇
  2004年   118篇
  2003年   97篇
  2002年   75篇
  2001年   22篇
  2000年   25篇
  1999年   15篇
  1998年   11篇
  1997年   21篇
  1996年   19篇
  1995年   16篇
  1994年   7篇
  1993年   14篇
  1992年   10篇
  1991年   8篇
  1990年   9篇
  1988年   7篇
  1987年   11篇
  1986年   6篇
  1985年   17篇
  1984年   22篇
  1983年   11篇
  1982年   15篇
  1981年   22篇
  1980年   15篇
  1979年   17篇
  1978年   13篇
  1977年   14篇
  1976年   9篇
  1975年   5篇
  1974年   6篇
  1973年   9篇
排序方式: 共有2024条查询结果,搜索用时 31 毫秒
101.
102.
Microfibrillated cellulose (MFC), a mechanically fibrillated pulp mostly consisting of nanofibrils, is a very attractive material because of its high elastic modulus and strength. Although much research has been done on composites of MFC and polypropylene (PP), it has been difficult to produce such composites at an industrial level because of the difficulties in using MFC in such composites are not only connected to the polarity (that can be improved with compatibilizers), but also with the challenge to make a homogeneous blend of the components, and also the low temperature stability of cellulose that could cause problems during processing. We developed a new processing method which enables continuous microfibrillation of pulp and its melt compounding with PP. Never-dried kraft pulp and powdered PP were used as raw materials to obtain MFC by kneading via a twin-screw extruder. Scanning electron microscopy showed nano to submicron wide fibers entangled in the powdered PP. MFC did not aggregate during the melt compounding process, during which the water content was evaporated. Maleic anhydride polypropylene (MAPP) was used as a compatibilizer to reinforce interfacial adhesion between the polar hydroxyl groups of MFC and non-polar PP. We investigated the effect of MAPP content on the mechanical properties of the composite, which were drastically improved by MAPP addition. Needle-leaf unbleached kraft pulp (NUKP)-derived MFC composites had better mechanical properties than needle-leaf bleached kraft pulp (NBKP)-derived MFC composites. Injection molded NUKP-derived MFC composites had good mechanical and thermal properties. The tensile modulus of 50 wt% MFC composite was two times, and the tensile strength 1.5 times higher than that of neat PP. The heat distortion temperature of 50 wt% MFC content composite under 1.82 MPa flexural load was increased by 53 °C, from 69 to 122 °C. This newly developed continuous process using powder resin has the potential for application at an industrial level.  相似文献   
103.
104.
Plasma Chemistry and Plasma Processing - Atmospheric low-temperature plasma has received attention for application in disinfection methods. In this study, we develop a plasma bubbling method as a...  相似文献   
105.
Hot-hole injection from plasmonic metal nanoparticles to the valence band of p-type semiconductors and reduction by hot electrons should be improved for efficient and tuneable reduction to obtain beneficial chemical compounds. We employed the concept of modal strong coupling between plasmons and a Fabry-Pérot (FP) nanocavity to enhance the hot-hole injection efficiency. We fabricated a photocathode composed of gold nanoparticles (Au−NPs), p-type nickel oxide (NiO), and a platinum film (Pt film) (ANP). The ANP structure absorbs visible light over a broad wavelength range from 500 nm to 850 nm via hybrid modes based on the modal strong coupling between the plasmons of Au−NPs and the FP nanocavity of NiO on a Pt film. All wavelength regions of the hybrid modes of the modal strong coupling system promoted hot-hole injection from the Au−NPs to NiO and proton/water reduction by hot electrons. The incident photon-to-current efficiency based on H2 evolution through water/proton reduction by hot electrons reached 0.2 % at 650 nm and 0.04 % at 800 nm.  相似文献   
106.
The demand for more efficient methods of establishing the undetermined stereochemistries of peptidic natural products continues unabated. A new method for microscale stereochemical determination was devised by integrating solid-phase synthesis, split-and-mix randomization, 18O/16O-encoding of d /l -configurations, tandem mass spectrometry, and biological evaluation. Here we applied gramicidin A as the molecule for a blind test. Gramicidin A and its 31 diastereomers were randomly prepared in microgram scale with 18O/16O-stereochemical encoding and subjected to MS/MS-structural determination and cytotoxicity assay. Only the parent gramicidin A was selected from among the 32 stereoisomers, validating the high reliability of the present strategy.  相似文献   
107.
Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with “green” detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3–5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the “green” detergents had the advantage of dispersing CNTs as well as SDS.  相似文献   
108.
109.
The decomposition of protein molecules from a mixed-protein solution on the surface of calcium hydroxyapatite (CaHap) and Ti(IV)-doped CaHap (TiHap) particles with a Ti/(Ca + Ti) atomic ratio (X Ti) of 0.10 and 0.20 under UV irradiation of 365 nm in wavelength was investigated. Acidic bovine serum albumin (BSA) and basic lysozyme (LSZ) were employed as a model of pathogenic proteins. The photocatalytic activities of TiHap particles were estimated from the decomposition of BSA and LSZ from the BSA (2.5 mg/cm3)–LSZ(1.0 mg/cm3) mixture under 1 mW/cm2 UV irradiation dispersed in a 10-mL quartz tube. No change in BSA concentration by UV irradiation was observed for all the unheated original CaHap and TiHap particles without and with low photocatalytic activities, respectively. Similar results were observed for the systems that employed heat-treated particles endowed a high photocatalytic activity by heat treatment at 650 °C for 1 h. On the other hand, a selective photocatalytic decomposition was observed for the LSZ, i.e., only LSZ molecules were decomposed completely from the BSA (2.5 mg/cm3)–LSZ(1.0 mg/cm3) mixture by using heat-treated TiHap particles with X Ti?=?0.10 and 0.20. This selective decomposition by TiHap particles was interpreted by higher adsorption affinity of positively charged LSZ to highly negatively charged TiHap together with low molecular weight and rigid structure of LSZ molecules.  相似文献   
110.
A novel strategy for fabrication of ordered ceramic–metal nanocomposites was demonstrated by multifunctional block copolymer/metal nanoparticle self-assembly. Hybrid organic–inorganic block copolymer poly(3-methacryloxypropyl-T8-heptaisobutyl-polyhedral oligomeric silsesquioxane-block-N,N-dimethylaminoethyl methacrylate) was synthesized and used as a bi-functional structure directing agent for ligand-stabilized platinum nanoparticles to form ordered organic–inorganic nanocomposites with dense loading of inorganic species in both microphase separated domains. Subsequently, thin films of the hybrid material were converted to ordered silica (ceramic)–platinum (metal) nanocomposites via UV-assisted ozonolysis. This is the first time ordered ceramic–metal nanocomposites were achieved through a bottom-up approach, opening up opportunities for the design and synthesis of a broad range of ordered inorganic–inorganic nanocomposites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号