首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2545篇
  免费   48篇
  国内免费   5篇
化学   1631篇
晶体学   9篇
力学   25篇
数学   501篇
物理学   432篇
  2020年   27篇
  2019年   27篇
  2016年   39篇
  2015年   23篇
  2014年   37篇
  2013年   78篇
  2012年   54篇
  2011年   77篇
  2010年   57篇
  2009年   41篇
  2008年   68篇
  2007年   74篇
  2006年   54篇
  2005年   88篇
  2004年   72篇
  2003年   52篇
  2002年   35篇
  2001年   37篇
  2000年   39篇
  1999年   38篇
  1998年   22篇
  1996年   29篇
  1995年   19篇
  1994年   35篇
  1993年   31篇
  1992年   25篇
  1991年   34篇
  1990年   20篇
  1989年   29篇
  1988年   28篇
  1987年   31篇
  1986年   38篇
  1985年   38篇
  1984年   38篇
  1983年   36篇
  1982年   43篇
  1981年   50篇
  1980年   41篇
  1979年   32篇
  1978年   43篇
  1977年   37篇
  1976年   34篇
  1975年   21篇
  1974年   29篇
  1973年   23篇
  1972年   27篇
  1971年   33篇
  1970年   29篇
  1968年   22篇
  1967年   36篇
排序方式: 共有2598条查询结果,搜索用时 140 毫秒
101.
Abstract

Human and animal excrements, in particular manure, stand for a significant and undisputable source of plant nutrients and renewable energy. In Europe, only 36% of P-inputs to soils originate from primary resources (rock phosphate) whereas 63% come from animal and human excretions applied to cropland as manure, digestion residues and sewage sludge. Simultaneously these waste flows represent a potential hazard to human health and aquatic bodies because of pathogens and eutrophication. Management of these waste flows is far from being sustainable, in part due to the lack of efficient processing technologies. A cooperative InnoEnergy—EIT financed KIC Knowledge and Innovation Community—research project pursues development and demonstration of highly efficient technologies to overcome the constraints and to yield renewable phosphate fertilizers and energy from waste flows that may have a combined technical energy potential of 3,600 PJ/year and an annual phosphate recovery potential of 4.5–5.5 million tonnes (as P2O5) in Europe.  相似文献   
102.
Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm?2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.  相似文献   
103.
Nanoparticle labels have enhanced the performance of diagnostic, screening, and other measurement applications and hold further promise for more sensitive, precise, and cost-effective assay technologies. Nevertheless, a clear view of the biomolecular interactions on the molecular level is missing. Controlling the ratio of molecular recognition over undesired nonspecific adhesion is the key to improve biosensing with nanoparticles. To improve this ratio with an aim to disallow nonspecific binding, a more detailed perspective into the kinetic differences between the cases is needed. We present the application of two novel methods to determine complex binding kinetics of bioconjugate nanoparticles, interferometry, and force spectroscopy. Force spectroscopy is an atomic force microscopy technique and optical interferometry is a direct method to monitor reaction kinetics in second-hour timescale, both having steadily increasing importance in nanomedicine. The combination is perfectly suited for this purpose, due to the high sensitivity to detect binding events and the ability to investigate biological samples under physiological conditions. We have attached a single biofunctionalized nanoparticle to the outer tip apex and studied the binding behavior of the nanoparticle in a sandwich-type immunoassay using dynamic force spectroscopy in millisecond timescale. Utilization of the two novel methods allowed characterization of binding kinetics in a time range spanning from 50 ms to 4 h. These experiments allowed detection and demonstration of differences between specific and nonspecific binding. Most importantly, nonspecific binding of a nanoparticle was reduced at contact times below 100 ms with the solid-phase surface.
Figure A single biofunctionalized nanoparticle was attached to the outer tip apex and the binding behavior of the nanoparticle in a sandwich-type immunoassay, A) without analyte, B) with analyte and C) saturating analyte concentration, was recorded using dynamic force spectroscopy in millisecond timescale. The setting allowed measurement of the association speed of nonspecific binding.
  相似文献   
104.
The rapidly growing, competitive biopharmaceutical market requires tight bioprocess monitoring. An integrated, automated platform for the routine online/at-line monitoring of key factors in the cell culture medium could greatly improve process monitoring. Mono- and disaccharides, as the main energy and carbon source, are one of these key factors. A CE-LIF method was developed for the analysis of several mono- and disaccharides, considering requirements and restrictions for analysis in an integrated, automated monitoring platform, such as the possibility for miniaturization to microchip electrophoresis. Analysis was performed after fluorescent derivatization with 8-aminopyrene-1,3,6-trisulfonic acid. The derivatisation reaction and the separation BGE were optimized using design of experiments. The developed method is applicable to the complex matrix of cell culture medium and proved transferable to microchip electrophoresis.  相似文献   
105.
The development of capillary electrophoresis, especially CE-SDS devices, has led CE-SDS to become an established tool in a wide range of applications in the analysis of biopharmaceuticals and is increasingly replacing its method of origin, SDS-PAGE. The goal of this study was to evaluate the comparability of molecular weight (MW) determination especially by CE-SDS and SDS-PAGE. For ensuring comparability, model proteins that have little or no posttranslational modifications and an IgG antibody were used. Only a minor influence of sample preparation conditions, including sample buffer, temperature conditions, and different reducing agents on the MW determination were found. In contrast, the selection of the MW marker plays a decisive role in determining the accurate apparent MW of a protein. When using different MW markers, the deviation in MW determination can exceed 10%. Interestingly, CE-SDS and 10% SDS-PAGE hardly differ in their trueness of MW determination. The trueness in relation to the reference MW for each protein was calculated. Although the trueness values for the model proteins considered range between 1.00 and 1.11 using CE-SDS, they range between 0.93 and 1.03 on SDS-PAGE, depending on the experimental conditions chosen.  相似文献   
106.
The lattice dynamics in as‐cast and nanocrystalline thermoelectric Bi2Te3 based p‐type and n‐type material were investigated using inelastic neutron scattering. Generalized densities of phonon states show substantial agreement between the lattice dynamics in as‐cast samples and previous studies. The lattice dynamics in the nanocrystalline materials differ significantly from its as‐cast counterparts in the acoustic phonon regime. In nanocrystalline p‐type and n‐type compounds, the average acoustic phonon group velocity was found to be reduced to 80(5)% and 95(2)% of the value in as‐cast material. It is argued that point‐defect and strain contrast scattering may play an important role for the understanding of lattice thermal conductivity in (nanocrystalline) Bi2Te3 based thermoelectrics beside the observed decrease of sound velocity. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
107.
We report the synthesis of a cyclen‐based ligand (4,10‐bis[(1‐oxidopyridin‐2‐yl)methyl]‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid= L1 ) containing two acetate and two 2‐methylpyridine N‐oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the GdIII complex may be sufficient for biological applications. A detailed structural study of the complexes by 1H NMR spectroscopy and DFT calculations indicates that they adopt an anti‐Δ(λλλλ) conformation in aqueous solution, that is, an anti‐square antiprismatic (anti‐SAP) isomeric form, as demonstrated by analysis of the 1H NMR paramagnetic shifts induced by YbIII. The water‐exchange rate of the GdIII complex is ${k{{298\hfill \atop {\rm ex}\hfill}}}$ =6.7×106 s?1, about a quarter of that for the mono‐oxidopyridine analogue, but still about 50 % higher than the ${k{{298\hfill \atop {\rm ex}\hfill}}}$ of GdDOTA (DOTA=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The 2‐methylpyridine N‐oxide chromophores can be used to sensitize a wide range of LnIII ions emitting in both the visible (EuIII and TbIII) and NIR (PrIII, NdIII, HoIII, YbIII) spectral regions. The emission quantum yield determined for the YbIII complex (${Q{{{\rm L}\hfill \atop {\rm Yb}\hfill}}}$ =7.3(1)×10?3) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.  相似文献   
108.
The material properties of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its proteins are discussed. We review the viral structure, size, rigidity, lipophilicity, isoelectric point, buoyant density and centrifugation conditions, stability against pH, temperature, UV light, gamma radiation, and susceptibility to various chemical agents including solvents and detergents. Possible inactivation, downstream, and formulation conditions are given including suitable buffers and some first ideas for quality-control methods. This information supports vaccine development and discussion with competent authorities during vaccine approval and is certainly related to drug-targeting strategies and hygienics. Several instructive tables are given, including the pI and grand average of hydropathicity (GRAVY) of SARS-CoV-1 and -2 proteins in comparison. SARS-CoV-1 and SARS-CoV-2 are similar in many regards, so information can often be derived. Both are unusually stable, but sensitive at their lipophilic membranes. However, since seemingly small differences can have strong effects, for example, on immunologically relevant epitope settings, unevaluated knowledge transfer from SARS-CoV-1 to SARS-CoV-2 cannot be advised. Published knowledge regarding downstream processes, formulations and quality assuring methods is, as yet, limited. However, standard approaches employed for other viruses and vaccines seem to be feasible including virus inactivation, centrifugation conditions, and the use of adjuvants.  相似文献   
109.
Asymmetric platinum donor–acceptor complexes [(pimp)Pt(Q2−)] are presented in this work, in which pimp=[(2,4,6-trimethylphenylimino)methyl]pyridine and Q2−=catecholate-type donor ligands. The properties of the complexes are evaluated as a function of the donor ligands, and correlations are drawn among electrochemical, optical, and theoretical data. Special focus has been put on the spectroelectrochemical investigation of the complexes featuring sulfonyl-substituted phenylendiamide ligands, which show redox-induced linkage isomerism upon oxidation. Time-dependent density functional theory (TD-DFT) as well as electron flux density analysis have been employed to rationalize the optical spectra of the complexes and their reactivity. Compound 1 ([(pimp)Pt(Q2−)] with Q2−=3,5-di-tert-butylcatecholate) was shown to be an efficient photosensitizer for molecular oxygen and was subsequently employed in photochemical cross-dehydrogenative coupling (CDC) reactions. The results thus display new avenues for donor–acceptor systems, including their role as photocatalysts for organic transformations, and the possibility to introduce redox-induced linkage isomerism in these compounds through the use of sulfonamide substituents on the donor ligands.  相似文献   
110.
The reaction of aryl‐ and amino(dihydro)boranes with dibora[2]ferrocenophane 1 leads to the formation 1,3‐trans‐dihydrotriboranes by formal hydrogenation and insertion of a borylene unit into the B=B bond. The aryltriborane derivatives undergo reversible photoisomerization to the cis‐1,2‐μ‐H‐3‐hydrotriboranes, while hydride abstraction affords cationic triboranes, which represent the first doubly base‐stabilized B3H4+ analogues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号