首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4665篇
  免费   82篇
  国内免费   13篇
化学   3245篇
晶体学   18篇
力学   76篇
数学   1024篇
物理学   397篇
  2020年   34篇
  2019年   45篇
  2016年   79篇
  2015年   62篇
  2014年   45篇
  2013年   145篇
  2012年   111篇
  2011年   153篇
  2010年   114篇
  2009年   124篇
  2008年   167篇
  2007年   166篇
  2006年   173篇
  2005年   144篇
  2004年   122篇
  2003年   115篇
  2002年   116篇
  2001年   63篇
  2000年   84篇
  1999年   73篇
  1998年   65篇
  1997年   62篇
  1996年   61篇
  1995年   79篇
  1994年   57篇
  1993年   61篇
  1992年   91篇
  1991年   84篇
  1990年   78篇
  1989年   69篇
  1988年   62篇
  1987年   65篇
  1986年   64篇
  1985年   77篇
  1984年   89篇
  1983年   80篇
  1982年   80篇
  1981年   104篇
  1980年   61篇
  1979年   81篇
  1978年   71篇
  1977年   92篇
  1976年   65篇
  1975年   84篇
  1974年   85篇
  1973年   66篇
  1972年   52篇
  1971年   47篇
  1970年   45篇
  1966年   32篇
排序方式: 共有4760条查询结果,搜索用时 31 毫秒
81.
82.
A carbon thick film electrode modified with an MnO2-film is investigated as an amperometric detector for hydrogen peroxide in flow-injection analysis (FIA). At an operating potential of +0.48 V vs. Ag/AgCl catalytic oxidation of the analyte is exploited for amperometric monitoring. Experimental parameters, such as pH of the carrier, working potential, flow rate and injection volume, are optimized. The amperometric signals are linearly proportional to the concentration of H2O2 in the range from 0.005 to 10 mg/L, showing a detection limit (3σ) of 2.3 μg/L. The method is applied to the determination of H2O2 in rain water and to a simple assay to quantify glucose in human plasma.  相似文献   
83.
The cubic face-centered structure of LiAl (, at ) transforms into a tetragonal body-centered structure (I41/amd, , at ). This first-order phase transition at about during heating is probably the reason for the so-called “ anomalies” in some physical properties like specific heat, electrical resistivity and nuclear-spin lattice relaxation. This transition seems to be correlated with the composition Li:Al of the alloy and the amount of Li vacancies.  相似文献   
84.
‘Bare’ FeO+ reacts in the gas phase with norbornane with collision efficiency, and the most prominent cationic products correspond to [FeC5H6]+ (32%), [FeC7H8]+ (19%), [FeC3H6O]+ (19%) and [FeC6H6]+ (14%), which are structurally characterized by ligand exchange as well as collision-induced dissociation experiments. Circumstantial evidence is provided which indicates that the complexes [FeC5H6]+, [FeC7H8]+, and [FeC6H6]+ originate from an Fe(norbornene)+ intermediate which itself is formed by elimination of H2O from the [FeO(norbornane)]+ encounter complex. Although the reactions are preceded and/or accompanied by partial H/D exchange, the isotope distribution in the productions clearly points to a preferential endo-attack of bare FeO+, with an endo/exo-ratio of ca. 10.3 and kinetic isotope effects kH/kD for the endo-abstraction of 2.4 and of 7.7 for approaching an exo-C? H bond. The preferred endo-approach of bicyclo[2.2.1]heptane by ‘bare’ FeO+ is in distinct contrast to the P-450-mediated or the iron(III)porphyrin-catalyzed hydroxylation of this substrate which favor reactions at the exo-face.  相似文献   
85.
The 13C NMR data of some mono- and disubstituted adamantanes, homoadamantenes and homonoradamantenes are presented. A model of dependencies of the γanti substituent induced shifts on torsion angles and internuclear distances between substituents and the γ carbons is proposed. Furthermore, it is shown that for the α substituent induced shifts strain within the molecular frameworks of these compounds plays no significant part.  相似文献   
86.
We have prepared four complexes of the type [Re(guanine)(2)(X)(CO)(3)] (guanine = 9-methylguanine or 7-methylguanine, X = H(2)O or Br) in order to understand the factors determining the orientation of coordinated purine ligands around the [Re(CO)(3)](+) core. The 9-methylguanine ligand (9-MeG) was chosen as the simplest N(9) derivatized guanine, and 7-methylguanine (7-MeG) was chosen because metal binding to N(9) does not impose steric hindrance. Two types of structures have been elucidated by X-ray crystallography, an HH (head-to-head) and HT (head-to-tail) conformer for each of the guanines. All complexes crystallize in monoclinic space groups: [Re(9-MeG)(2)(H(2)O)(CO)(3)]ClO(4) (2) in P2(1)/n with a = 12.3307(10) A, b = 16.2620(14) A, c = 13.7171(11) A, and beta = 105.525(9) degrees, V = 2650.2(4) A(3), with the two bases in HT orientation and its conformer [Re(9-MeG)(2)(H(2)O)(CO)(3)]Br (3) in P2(1)/n with a = 15.626(13) A, b = 9.5269(5) A, c = 15.4078(13) A, and beta = 76.951(1) degrees, V = 2234.5(3) A(3), and the two bases in an HH orientation. Similarly, [Re(7-MeG)(2)(H(2)O)(CO)(3)]ClO(4) (4) crystallizes in P2(1)/c with a = 13.0708(9) A, b = 15.4082(7) A, c = 14.316(9) A, and beta = 117.236(7) degrees, V = 2563.5(3) A(3), and exhibits an HT orientation and [ReBr(7-MeG)(2)(CO)(3)] (5) in P2/c with a = 17.5117(9) A, b = 9.8842(7) A, c = 15.3539(1) A, and beta = 100.824(7) degrees, V = 2610.3(3) A(3), and shows an HH orientation. When crystals of any of these complex pairs are dissolved in D(2)O, the (1)H NMR spectrum shows a single peak for the H(8) resonance of the respective coordinated purine indicating a rapid equilibrium between HH and HT conformations in solution. DFT calculations simulating the rotation of one ligand around its Re-N bond showed energetic barriers of less than 8.7 kcal/mol. We find no hypochromic effect in the Raman spectrum of 3, which showed base stacking in the solid state. Neither steric interactions nor hydrogen bonding are important in determining the orientation of the ligands in the coordination sphere.  相似文献   
87.
XANES and EXAFS spectroscopic studies at the Mn-K- and Br-K-edge of reaction products of (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride ([(salen)Mn(III)Cl], 1) and (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) bromide ([(salen)Mn(III)Br], 2) with 4-phenylpyridine N-oxide (4-PPNO) and 3-chloroperoxybenzoic acid (MCPBA) are reported. The reaction of the Mn(III) complexes with two equivalents of 4-PPNO leads to a hexacoordinated compound, in which the manganese atom is octahedrally coordinated by four oxygen/nitrogen atoms of the salen ligand at an average distance of approximately 1.90 A and two additional, axially bonded oxygen atoms of the 4-PPNO at 2.25 A. The oxidation state of this complex was determined as approximately +IV by a comparative study of Mn(III) and Mn(V) reference compounds. The green intermediate obtained in reactions of MCPBA and solutions of 1 or 2 in acetonitrile was investigated with XANES, EXAFS, UV/Vis, and Raman spectroscopy, and an increase of the coordination number of the manganese atoms from 4 to 5 and the complete abstraction of the halide was observed. A formal oxidation state of IV was deduced from the relative position of the pre-edge 1s-->3d feature of the X-ray absorption spectrum of the complex. The broad UV/Vis band of this complex in acetonitrile with lambda(max)=648 nm was consistent with a radical cation structure, in which a MCPBA molecule was bound to the Mn(IV) central atom. An oxomanganese(V) or a dimeric manganese(IV) species was not detected.  相似文献   
88.
The reactions of polyuridylic acid [poly(U)] with Ru(bpy)3(3+) [Ru(III)] and SO4.-, following UV and visible light irradiation of Ru(bpy)3(2+) [Ru(II)] in the presence of S2O8(2-), were studied in an argon-saturated aqueous solution using time-resolved absorption and conductivity methods. The kinetics of the Ru(III) conversion to Ru(II) in the presence of poly(U) was monitored spectroscopically either in the absence of SO4.- [rapid mixing with Ru(III)] or in its presence (after laser flash excitation, lambda exc = 353 nm). The conversion of Ru(III) to Ru(II) is complete at a [nucleotide]/[sensitizer] (N/S) ratio greater than or equal to 10 (rate constant k = 12 s-1) for rapid mixing and at N/S greater than or equal to 6 (k = 15 s-1 at N/S = 10) after laser pulsing. Conductivity measurements following the laser pulse revealed a fast conductivity increase (risetime less than 10 micros), due to the formation of charged species and protons. A slower increase in the 0.1-0.5 s range was observed for poly(U) but it is considerably smaller for poly(dU) and absent in uracil containing monounits. The slow increase is unaffected by pH changes in the 3.5-7 range, markedly reduced in the 7-9 range and is replaced by a slight decrease in conductivity in buffered solutions. An explanation is that poly(U)-bound excited Ru(II) reacts with S2O8(2-) forming Ru(III) and SO4.- as oxidizing species both of which react with poly(U) bases. The resulting base radicals react with Ru(III) or the ligands in the ruthenium complex, producing protons which give rise to the slow conductivity increase (k = 15 s-1 at N/S = 10). The formation of single-strand breaks and the ensuing release of condensed counterions does not appear to contribute significantly to the slow conductivity signal. At N/S less than 10 the observed rate and extent of Ru(III)--Ru(II) conversion and of the slow proton production vary markedly with the N/S ratio.  相似文献   
89.
Electron attachment spectroscopy is employed to study the formation of negative ions from the chloroethylenes. It is found that the resonances recently observed in the total electron scattering cross section are predominantly associated with the formation of Cl?. Only in tetrachloroethylene is a long-lived parent negative ion observed.  相似文献   
90.
The feasibility of potabilization of sulfurous water was investigated by photochemical oxidation processes using a batch photoreactor and a continuous-flow photoreactor, equipped with UV lamps of 1000 W and 1500 W, respectively. Additionally, two advanced processes of oxidation were applied i.e. with a use of a UV light/H2O2/air and UV light/H2O2/O3/air. These two processes were compared for their efficiency to the direct oxidation process where ozone is used in the absence of UV light. Results obtained for both advanced processes showed better oxidation than takes place by ozone in the absence of UV light. After the photooxidation processes, different processes for the absorption or precipitation of sulfates were investigated to comply with the World Health Organization (WHO) norm that demands a limit of < or =250 mg L(-1) of SO4(2-) in drinking water. Additionally, reverse osmosis was simulated using Osmonics Inc. software to predict the feasibility of lowering the salt concentration below WHO limits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号