首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11484篇
  免费   2193篇
  国内免费   1450篇
化学   7958篇
晶体学   158篇
力学   795篇
综合类   105篇
数学   1256篇
物理学   4855篇
  2024年   16篇
  2023年   268篇
  2022年   304篇
  2021年   461篇
  2020年   491篇
  2019年   500篇
  2018年   413篇
  2017年   379篇
  2016年   607篇
  2015年   572篇
  2014年   687篇
  2013年   830篇
  2012年   1084篇
  2011年   1042篇
  2010年   826篇
  2009年   757篇
  2008年   740篇
  2007年   652篇
  2006年   667篇
  2005年   578篇
  2004年   381篇
  2003年   320篇
  2002年   323篇
  2001年   236篇
  2000年   214篇
  1999年   218篇
  1998年   180篇
  1997年   205篇
  1996年   185篇
  1995年   162篇
  1994年   137篇
  1993年   97篇
  1992年   86篇
  1991年   79篇
  1990年   77篇
  1989年   68篇
  1988年   52篇
  1987年   29篇
  1986年   44篇
  1985年   32篇
  1984年   18篇
  1983年   15篇
  1982年   15篇
  1981年   8篇
  1980年   9篇
  1975年   7篇
  1973年   4篇
  1972年   7篇
  1965年   6篇
  1964年   5篇
排序方式: 共有10000条查询结果,搜索用时 300 毫秒
991.
Using enrichment procedures, five strains that can utilize soybean phytosterols as the sole carbon source were isolated from steroids-contaminated soil samples. Among the isolated strains, the strain NwIB-01 with the highest steroid degradation ability was identified as Mycobacterium neoaurum by morphological, physiological, biochemical tests and 16S rRNA sequence analysis. Meanwhile, the key enzyme gene, which was involved in steroid metabolism and encoding 395-amino acid 3-ketosteroid 9α-hydroxylase (KSH), was obtained from M. neoaurum NwIB-01 with the assistance of homology analysis and chromosome walking. To our best knowledge, this is the first report to the gene of key enzyme KSH from M. neoaurum. Strain NwIB-01 exhibited powerful ability of cleaving the side chain specifically from soybean phytosterols to accumulate 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD). It was showed that when cultured in 15 g/l phytosterols, the yield of ADD reached 4.23 g/l while accompanied by 1.76 g/l AD in 96-h-old culture (the molar yield of AD + ADD is 64.7%). The strain NwIB-01 can be applied as excellent phytosterols-transformation strains in potential industrial applications.  相似文献   
992.
ε-Poly-l-lysine (ε-PL), a natural biomacromolecule having a broad spectrum of antibacterial activity, was grafted on the wool fiber via the acyl transfer reaction catalyzed by microbial transglutaminase (mTGase) to develop a new strategy for antibacterial functionalization of proteinous materials. The effects of the concentrations of ε-PLs and mTGases on the graft yields were investigated. A coating of ε-PL that almost completely covered the scale profile on the wool surface was visualized by scanning electron microscopy (SEM) and further demonstrated in terms of Allw?rden’s reaction characteristic of wool. Identifiable differences in lysine content and color depth among the stained wool samples reveal the changes in the surface composition and polarity caused by the incorporation of ε-PL onto the wool substrate, respectively. The ratio of bacteriostasis to Escherichia coli of the wool fabric grafting ε-PL reached 96.6 %, indicating an excellent antibacterial effect. The application of ε-PL and corresponding mTGase-catalyzed grafting reaction would provide a worthwhile reference for antibacterial functionalization of proteinous materials in various forms.  相似文献   
993.
A DNA fragment containing the entire coding sequence of nitrilase gene was amplified from Rhodococcus rhodochrous tg1-A6 with high nitrilase activity using PCR and sequenced. The open reading frame of the nitrilase gene contains 1,101 base pairs, which encodes a putative polypeptide of 366 amino acid residues. The nitrilase gene was cloned into an expression vector pET-28a and expressed in an Escherichia coli strain BL21(DE3). The enzymatic activity of nitrilase, which converts various nitriles to the corresponding carboxylic acids, was detected to reach 24.5 U/ml at 9 h in the recombinant bacteria.  相似文献   
994.
The semirigid tridentate 8-(2-pyridinylmethylthio)quinoline ligand (Q1) is shown to form the structurally characterized transition metal complexes [Cu(Q1)Cl2] (1), [Co(Q1)(NO3)2] (2), [Cd(Q1)(NO3)2] (3), [Cd(Q1)I2] (4). [Cu(Q1)2](BF4)2·(H2O)2 (5), [Cu(Q1)2](ClO4)2·(CH3COCH3)2 (6), [Zn(Q1)2](ClO4)2(H2O)2 (7), [Cd2(Q1)2Br4] (8), [Ag2(Q1)2(ClO4)2] (9), and [Ag2(Q1)2(NO3)2] (10). Four types of structures have been observed: ML-type in complexes 14, in which the anions Cl, NO3 or I also participate in the coordination; ML2 type in complexes 57 without direct coordination of the anions BF4 or ClO4 and with more (Cu2+) or less (Zn2+) distorted bis-fac coordinated Q1; M2L2-type in complex 8, in which two Br ions act as bridges between two metal ions; and M2(μ-L)2-type in complexes 9 and 10, in which the ligand bridges two anion binding and Ag–Ag bonded ions. Depending on electron configuration and size, different coordination patterns are observed with the bonds from the metal ions to Npyridyl longer or shorter than those to Nquinoline. Typically Q1 acts as a facially coordinating tridentate chelate ligand except for the compounds 9 and 10 with low-coordinate silver(I). Except for 6 and 8, the complexes exhibit distinct constraining effects against both G(+) and G(-) bacteria. Complexes 1, 3, 4, 5, 7 have considerable antifungal activities and complexes 1, 5, 7, and 10 show selective effects to restrain certain botanic bacteria. Electrochemical studies show quasi-reversible reduction behavior for the copper(II) complexes 1, 5 and 6.  相似文献   
995.
Five new 0D–2D Cd(II) complexes, [Cd2(Hbimt)2I4] (1), [Cd(bimt)(Hbimt)Br]n (2), [Cd(Hbimt)Cl2(H2O)]n (3), {[Cd(Hbimt)(SO4)(H2O)2]·1.5H2O}n (4) and [Cd(Hbimt)(SCN)2]n (5) (Hbimt = 2-((benzoimidazol-yl)methyl)-1H-tetrazole) have been synthesized by the reactions of Hbimt with suitable cadmium salts. Employment of different anions can influence the coordination modes of the Hbimt ligand, and accordingly result in different structures ranging from 0D to infinite 1D and 2D networks. Complex 1 displays a dimeric structure in which two Cd(II) ions are bridged through two iodine atoms. Complex 2 was caused by deprotonation of the Hbimt ligand, resulting in a 1D helical chain. While in complexes 3 and 4, Hbimt acts as a bidentate bridging ligand which joins two Cd(II) ions, leading to 1D stair-like chains. Complex 5 exhibits a 2D network structure with infinite 1D [Cd2(SCN)2]n chains. The distinct structures of 1, 2, 3, 4 and 5 reveal that the anions and the versatile coordination modes of the ligand play an important role in the structures of the complexes. In addition, the luminescent properties of complexes 15 have been investigated in the solid state at room temperature.  相似文献   
996.
997.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   
998.
Polyelectrolytes with various characteristic functional groups as interlinkers to anchor Pt nanoparticles were used to functionalize carbon nanotubes (CNTs) as Pt electrocatalyst support. It was found that polyanions (poly(styrenesulfonic acid) (PSS), and poly(acrylic acid sodium) (PAA)) have a beneficial effect on methanol electrooxidation on Pt nanoparticles supported on carbon nanotubes via modifying their electronic structure through charge transfer from polyanions to Pt sites and supply of oxygen-containing species. The increased electron density around Pt sites by the charge transfer from polyanions would cause partial filling of Pt 5d-bands, resulting in the downshift of d-band center and weaker chemisorption with oxygen-containing species (e.g. COad). The weakened chemisorption of CO on Pt nanoparticles would promote the methanol electrooxidation. On the contrary, polycations would have an opposite effect on the electronic structure and chemisorption properties of Pt nanoparticles.  相似文献   
999.
Two new coumarin derivatives, 7-(N,N′-diethylamino)-3-(4-hydroxyphenyl)-coumarin and 7-(N,N′-diethylamino)-3-(4-bromophenyl)-coumarin, were synthesized successfully. Their structures were verified by single crystal X-ray crystallography. The UV–vis absorption and fluorescence of the compounds were discussed. The compounds exhibit strong blue emission under ultraviolet light excitation. The molecular structures, the lowest energy transitions and the UV–vis spectra of 7-(N,N′-diethylamino)-3-(4-hydroxyphenyl)-coumarin and 7-(N,N′-diethylamino)-3-(4-bromophenyl)-coumarin have been studied with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) at B3LYP/6-31G(d) level.  相似文献   
1000.
A novel and sensitive biosensor was developed for the determination of nitrite. Firstly, multi-walled carbon nanotubes–poly(amidoamine)–chitosan (MWNT–PAMAM–Chit) nanocomposite along with the incorporation of DNA was used to modify the glassy carbon electrode. Then the immobilization of Cyt c was accomplished using electrochemical deposition method by consecutive cyclic voltammetry (CV) scanning in a neutral Cyt c solution. CV behaviors of the modified electrodes showed that the MWNT–PAMAM–Chit nanocomposite is a good platform for the immobilization of DNA and Cyt c in order, at the same time, an excellent promoter for the electron transfer between Cyt c and the electrode. At high potential, the immobilized Cyt c could be further oxidized into highly reactive Cyt c π-cation by two-step electrochemical oxidation, which could oxidize NO2 into NO3 in the solution. Therefore, a nitrite biosensor based on the biocatalytic oxidation of the immobilized Cyt c was fabricated, which showed a fast response to nitrite (less than 5 s). The linear range of 0.2–80 μM and a detection limit of 0.03 μM was obtained. Finally, the application in food analysis using sausage as testing samples was also investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号