首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200592篇
  免费   2167篇
  国内免费   612篇
化学   111699篇
晶体学   2412篇
力学   8085篇
综合类   4篇
数学   19454篇
物理学   61717篇
  2016年   2456篇
  2015年   1758篇
  2014年   2570篇
  2013年   8041篇
  2012年   5470篇
  2011年   6838篇
  2010年   4647篇
  2009年   4573篇
  2008年   6191篇
  2007年   6363篇
  2006年   6061篇
  2005年   5542篇
  2004年   5084篇
  2003年   4561篇
  2002年   4444篇
  2001年   5887篇
  2000年   4468篇
  1999年   3577篇
  1998年   2848篇
  1997年   2882篇
  1996年   2795篇
  1995年   2626篇
  1994年   2403篇
  1993年   2273篇
  1992年   2790篇
  1991年   2664篇
  1990年   2616篇
  1989年   2642篇
  1988年   2585篇
  1987年   2620篇
  1986年   2444篇
  1985年   3315篇
  1984年   3335篇
  1983年   2751篇
  1982年   2947篇
  1981年   2904篇
  1980年   2778篇
  1979年   2978篇
  1978年   3270篇
  1977年   3140篇
  1976年   3117篇
  1975年   2887篇
  1974年   2832篇
  1973年   2868篇
  1972年   1911篇
  1971年   1583篇
  1969年   1562篇
  1968年   2044篇
  1967年   2202篇
  1966年   1990篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
81.
A theory is developed for the density profile of low temperature plasmas confined by applied magnetic field and an experiment of the electron-cyclotron-resonance (ECR) plasma is conducted to compare the theoretical prediction and experimental measurements. Due to a large electron mobility along the magnetic field, electrons move quickly out of the system, leaving ions behind and building a space charge potential, which leads to the ambipolar diffusion of ions. In a steady-state condition, the plasma generation by ionization of neutral molecules is in balance with plasma loss due to the diffusion, leading to the electron temperature equation, which is expressed in terms of the plasma size, chamber pressure, and the ionization energy and cross section of neutrals. The power balance condition leads to the plasma density equation, which is also expressed in terms of the electron temperature, the input microwave power and the chamber pressure. It is shown that the plasma density increases, reaches its peak and decreases, as the chamber pressure increases from a small value (0.1 mTorr). These simple expressions of electron temperature and density provide a scaling law of ECR plasma in terms of system parameters. After carrying out an experimental observation, it is concluded that the theoretical predictions of the electron temperature and plasma density agree remarkably well with experimental data  相似文献   
82.
We have recently demonstrated that polarization transfer using an adiabatic passage through the Hartmann-Hahn condition (APHH-CP) by a variation of the radio-frequency amplitude can substantially improve the transfer efficiency over Hartmann-Hahn cross polarization. Here we show that APHH-CP can be combined with fast magic angle sample spinning (MAS). The heteronuclear dipolar order, established in the course of the transfer, can indeed be created and preserved.  相似文献   
83.
Many of the striking similarities which occur for the adjoint representation of groups in the exceptional series (cf. [1–3]) also occur for certain representations of specific reductive subgroups. The tensor algebras on these representations are easier to describe (cf. [4,5,7]), and may offer clues to the original situation.The subgroups which occur form a Magic Triangle, which extends Freudenthal's Magic Square of Lie algebras. We describe these groups from the perspective of dual pairs, and their representations from the action of the dual pair on an exceptional Lie algebra. To cite this article: P. Deligne, B.H. Gross, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 877–881.  相似文献   
84.
Alloys of the systems Fe–Al (mixable over the whole concentration range) and Fe–Mg (insoluble with each other) were produced by implantation of Fe ions into Al and Mg, respectively. The implantation energy was 200 keV and the ion doses ranged from 1 × 1014 to 9 × 1017cm-2The obtained implantation profiles were determined by Auger electron spectroscopy depth profiling. Maximum iron concentrations reached were up to 60 at.% for implantation into Al and 94 at.% for implantation into Mg. Phase analysis of the implanted layers was performed by conversion electron Mössbauer spectroscopy and X‐ray diffraction. For implantation into Mg, two different kinds of Mössbauer spectra were obtained: at low doses paramagnetic doublets indicating at least two different iron sites and at high doses a dominant ferromagnetic six‐line‐pattern with a small paramagnetic fraction. The X‐ray diffraction pattern concluded that in the latter case a dilated αiron lattice is formed. For implantation into Al, the Mössbauer spectra were doublet structures very similar to those obtained at amorphous Fe–Al alloys produced by rapid quenching methods. They also indicated at least two different main iron environments. For the highest implanted sample a ferromagnetic six‐line‐pattern with magnetic field values close to those of Fe3Al appeared.  相似文献   
85.
86.
87.
88.
89.
Studies of microwave amplification with an in-focused electron beam drawn from an induction injector are reported. A free-electron laser (FEL) operating at 9.4 GHz and employing ion-focusing within the interaction region has achieved power in excess of 30 MW at 9.4 GHz, with a beam energy of 0.8 MeV and current of 0.7 kA. Peak gain is 20 dB/m, with no saturation after 15 wiggler periods. Also reported are the first evolution and detuning data for an ion-channel laser/maser (ICL). Two shortcomings of the prematurely halted ICL studies are poor frequency discrimination and a large axial plasma gradient. Prospects for operation with an upgraded 1.6 MeV accelerator are discussed  相似文献   
90.
The reaction of 4-aminobenzofurazan with aryldiazonium salts leads to the formation of 4-amino-5-aryl-azobenzofurazans and 5-amino-2-aryl-4-nitroso-2H-benzotriazoles, products of the rearrangement of the initially formed 4-amino-7-(arylazo)benzofurazans. Oxidation of the benzofurazan as well as of the triazole derivatives gives 7-aryl-1,2,3-triazol[4,5-e]benzofurazans. The chemical properties of some of the compounds obtained have been investigated.Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1432–1438, October, 1994. Original article submitted July 25, 1994.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号