首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
化学   33篇
晶体学   1篇
力学   4篇
数学   22篇
物理学   12篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   10篇
  2012年   6篇
  2011年   9篇
  2010年   1篇
  2009年   8篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有72条查询结果,搜索用时 0 毫秒
71.
Layerwise Laser Melting (LLM) is a layerwise production technique enabling the production of complex metallic parts. In the process a thin layer of powder is first deposited on a base plate. With the energy of a scanning laser beam this layer is melted at selected places, according to a predefined scanning pattern. After scanning, a new layer of powder is deposited on top of the previous layer and selectively melted. This sequence of depositing and scanning is repeated until the complete part is built. The local geometry surrounding the melt pool has a large influence on the processing behavior. For process control issues, this influence must be known and quantified, in order to determine a priori optimal processing conditions and to interpret measured melt pool radiation. In order to study the melt pool behavior, optical process monitoring of LLM has been applied using a high speed near-infrared CMOS camera and a large area silicon photodiode sensor. Data processing rates up to 10 kHz and real-time process monitoring are achieved using image and signal processing on a Field Programmable Gate Array (FPGA). Several case studies will be presented showing that the geometric influencing factors can be studied and quantified by analyzing the melt pool sensor output.  相似文献   
72.
Tastan E  Onder S  Kok FN 《Talanta》2011,84(2):524-530
In this study, Trametes versicolor laccase was immobilized on polytetrafluoroethylene (PTFE) membranes using two different techniques, entrapment to gelatin and covalent immobilization to the surface. For surface immobilization, functional groups were formed on PTFE surface by radiofrequency (RF) plasma treatment followed by polymer grafting. Two different polymers, polyacrylamide (pAAm) and polyacrylic acid (pAAc) were tried. For polyacrylamide grafted PTFE, a two-step polymerization process was used. The membranes were first treated with hydrogen plasma and pAAm grafted PTFE (pAAm-g-PTFE) was then formed by argon plasma treatment. To produce pAAc grafted PTFE (pAAc-g-PTFE), the surface was first treated with argon plasma and AAc was then attached to the surface by heat treatment (70 °C, 6 h). For both cases, an optimized carbodiimide coupling reaction was used for laccase immobilization. Enzyme activity was measured by an oxygen electrode using guaiacol as substrate. All three biosensing membranes were characterized and compared in terms of optimum working conditions, storage stability and reusability. Our study concluded that although a higher activity was obtained by gelatin entrapped laccase, its mechanical instability and poor storage life makes the gelatin biosensor unattractive for multiple usages and for field measurements. pAAc-g-PTFE biosensor was found to be more stable and highly reusable (ca. 50 times) when compared with the other two biosensors. In addition, its sensitivity was suitable for field applications. Therefore, the pAAc-g-PTFE biosensor could be proposed as an alternative on-site detection tool for phenolic compound monitoring.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号