首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   17篇
  国内免费   4篇
化学   225篇
晶体学   2篇
力学   50篇
数学   37篇
物理学   76篇
  2024年   1篇
  2023年   2篇
  2022年   13篇
  2021年   18篇
  2020年   21篇
  2019年   30篇
  2018年   29篇
  2017年   26篇
  2016年   17篇
  2015年   16篇
  2014年   29篇
  2013年   30篇
  2012年   43篇
  2011年   39篇
  2010年   19篇
  2009年   12篇
  2008年   12篇
  2007年   13篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  1996年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有390条查询结果,搜索用时 15 毫秒
81.
A split plot 3 × 3 experiment was designed to examine the impact of three concentrations of CO? (400, 800 and 1,200 μmol·mol?1) on the phenolic and flavonoid compound profiles, phenylalanine ammonia lyase (PAL) and antioxidant activity in three varieties of Labisia pumila Benth. (var. alata, pumila and lanceolata) after 15 weeks of exposure. HPLC analysis revealed a strong influence of increased CO? concentration on the modification of phenolic and flavonoid profiles, whose intensity depended on the interaction between CO? levels and L. pumila varieties. Gallic acid and quercetin were the most abundant phenolics and flavonoids commonly present in all the varieties. With elevated CO? (1,200 μmol·mol?1) exposure, gallic acid increased tremendously, especially in var. alata and pumila (101-111%), whilst a large quercetin increase was noted in var. lanceolata (260%), followed closely by alata (201%). Kaempferol, although detected under ambient CO? conditions, was undetected in all varieties after exposure. Instead, caffeic acid was enhanced tremendously in var. alata (338~1,100%) and pumila (298~433%). Meanwhile, pyragallol and rutin were only seen in var. alata (810 μg·g?1 DW) and pumila (25 μg·g?1 DW), respectively, under ambient conditions; but the former compound went undetected in all varieties while rutin continued to increase by 262% after CO? enrichment. Interestingly, naringenin that was present in all varieties under ambient conditions went undetected under enrichment, except for var. pumila where it was enhanced by 1,100%. PAL activity, DPPH and FRAP also increased with increasing CO? levels implying the possible improvement of health-promoting quality of Malaysian L. pumila under high CO? enrichment conditions.  相似文献   
82.
In this research, the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three-dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k–e{\varepsilon} model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at the jet centerline are noted. The velocity vectors of the main flow and the secondary flow are illustrated. Also, effect of aspect ratio on mixing in rectangular cross-section jets is considered. The aspect ratios that were considered for this work were 1:1 to 1:4. The results showed that the jet entrains more with smaller AR. Special attention has been drawn to the influence of the Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the rectangular jet. An influence on the jet evolution is found for smaller Re, but the jet is close to a converged state for higher Reynolds numbers. The inflow conditions have considerable influence on the jet characteristics.  相似文献   
83.
Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool back to room temperature. In self-seeding experiments, some crystallites persist during sample annealing and nucleate the growth of core-crystalline micelles upon cooling. There is evidence in the literature that the nature of the self-assembled structures formed is independent of the annealing time at a particular temperature. There are, however, no systematic studies of how the rate of cooling affects self-assembly. We examine three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1–2 h time scale. For example, several of the systems generated elongated 1D micelles of uniform length under these slow cooling conditions. When subjected to rapid cooling (on the time scale of a few minutes or faster), branched structures were obtained. Variation of the cooling rate led to a variation in the size and degree of branching of some of the structures examined. These changes can be explained in terms of the high degree of supersaturation that occurs when unimer solutions at high temperature are suddenly cooled. Enhanced nucleation, seed aggregation, and selective growth of the species of lowest solubility contribute to branching. Cooling rate becomes another tool for manipulating crystallization-driven self-assembly and controlling micelle morphologies.

In the self-assembly of crystalline-coil block copolymers in solution, heating followed by different cooling rates can lead to different structures.  相似文献   
84.
Abstract

In this article, we investigated the effect of martensite morphology on the mechanical properties and formability of dual phase steels. At first, three heat treatment cycles were subjected to a low-carbon steel to produce ferrite–martensite microstructure with martensite morphology of blocky-shaped, continuous, and fibrous. Tensile tests were then carried out so as to study mechanical properties, particularly the strength and strain hardening behavior of dual phase steels. In order to study the formability of dual phase samples, Forming Limit Diagram was obtained experimentally and numerically. Experimental forming limit diagram was obtained using Nakazima forming test, while Finite Element Method was utilized to numerically predict the forming limit diagram. The results indicated that the dual phase samples with fibrous martensite morphology had the highest tensile properties and strain rate hardening out of the three different microstructures. Blocky-shaped martensite morphology, on the other hand, had the worst mechanical properties. The study of the strain hardening behavior of dual phase sample by Kocks–Mecking-type plots, evinced two stages of strain hardening for all specimens with different microstructures: stages III and IV. The forming limit diagram of dual phase steels also proved that samples with fibrous martensite morphology had the best formability compared to other two microstructures. The simulated forming limit diagram manifested that there is a good agreement between experimental results and those obtained by FEM.  相似文献   
85.
The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.  相似文献   
86.
Research on Chemical Intermediates - Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 (MCM-41-Pr-BTA), as a novel hybrid organosilica, was prepared and properly characterized by the...  相似文献   
87.
Journal of Thermal Analysis and Calorimetry - Solar is one of the most promising energy sources because of the abundance of solar radiation in certain parts of the world. One of the main limiting...  相似文献   
88.
89.
The aim of the present study is to evaluate the antioxidant and proapoptotic effects of silver–palm pollen (Ag/PP) nanocomposite. The percentage of live cells after treatment with various concentrations of Ag/PP (0, 5, 10, 20, and 40 µM/mL) was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The antioxidant potential of Ag/PP was measured via the scavenging effects of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and molecular analysis. Apoptosis was assessed by morphological analysis, fluorescent dye, and flow cytometry, and its fundamental mechanism studied based on evaluation of Bax and Bcl2 gene expression. Ag/PP nanocomposite suppressed the viability of MCF-7 cells (dose and time dependently) and showed antioxidant properties. Morphological changes associated with cell death were observed in treated cells. Accumulation of dead cells in sub-G1 phase confirmed the occurrence of apoptosis in exposed cells. In addition, NPs induced cell death by altering Bcl-2 expression in MCF-7 cells. These results indicate that Ag/PP nanocomposite is an effective combination for removal of cancer cells by induction of apoptosis and could be useful for human health due to its antioxidant effects.  相似文献   
90.
The antioxidant activities of crude extract fractions using Hexane, Chloroform, Ethyl Acetate, Butanol and Water of Clematis orientalis and Clematis ispahanica were investigated. 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay and the ferric reducing/antioxidant potential (FRAP) were used to evaluate the antioxidant capacity. The total phenolics were found to be 4.37–9.38 and 1.32–11.37 mg gallic acid equivalents (GAE)/g in different fractions for C. orientalis and C. ispahanica, respectively. The ethyl acetate fraction of C. orientalis and chloroform fraction of C. ispahanica showed the highest DPPH and FRAP activities at a concentration of 300 μg/mL. The predominant phenolic compounds identified by HPLC in C. orientalis were Resorcinol (603.5 μg/g DW) in chloroform fraction and Ellagic acid (811.7 μg/g DW) in chloroform fraction of C. ispahanica.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号