首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   5篇
化学   117篇
数学   1篇
物理学   13篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   10篇
  2012年   13篇
  2011年   11篇
  2010年   11篇
  2009年   8篇
  2008年   11篇
  2007年   9篇
  2006年   18篇
  2005年   8篇
  2004年   1篇
  2003年   5篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1989年   1篇
排序方式: 共有131条查询结果,搜索用时 31 毫秒
11.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   
12.
Two types of multiarm star block copolymers: (polystyrene)m‐poly(divinylbenzene)‐poly(methyl methacrylate)n, (PS)m‐polyDVB‐(PMMA)n and (polystyrene)m‐poly(divinylbenzene)‐poly(tert‐butyl acrylate)k, (PS)m‐polyDVB‐(PtBA)k were successfully prepared via a combination of cross‐linking and Diels–Alder click reactions based on “arm‐first” methodology. For this purpose, multiarm star polymer with anthracene functionality as reactive periphery groups was prepared by a cross‐linking reaction of divinyl benzene using α‐anthracene end functionalized polystyrene (PS‐Anth) as a macroinitiator. Thus, obtained multiarm star polymer was then reacted with furan protected maleimide‐end functionalized polymers: PMMA‐MI or PtBA‐MI at reflux temperature of toluene for 48 h resulting in the corresponding multiarm star block copolymers via Diels–Alder click reaction. The multiarm star and multiarm star block copolymers were characterized by using 1H NMR, SEC, Viscotek triple detection SEC (TD‐SEC) and UV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 178–187, 2009  相似文献   
13.
The double click reactions (Cu catalyzed Huisgen and Diels–Alder reactions) were used as a new strategy for the preparation of well‐defined heterograft copolymers in one‐pot technique. The synthetic strategy to the various stages of this work is outlined: (i) preparing random copolymers of styrene (St) and p‐chloromethylstyrene (CMS) (which is a functionalizable monomer) via nitroxide mediated radical polymerization (NMP); (ii) attachment of anthracene functionality to the preformed copolymer by the o‐etherification procedure and then conversion of the remaining ? CH2Cl into azide functionality; (iii) by using double click reactions in one‐pot technique, maleimide end‐functionalized poly(methyl methacrylate) (PMMA‐MI) via atom transfer radical polymerization (ATRP) of MMA and alkyne end‐functionalized poly (ethylene glycol) (PEG‐alkyne) were introduced onto the copolymer bearing pendant anthryl and azide moieties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6969–6977, 2008  相似文献   
14.
Three new polyamidoximes (PAO) having appropriate functionalities to bind transition metal ions were prepared. The polymers were obtained by the reaction of dichlorooximino ethane with the corresponding diamine. Characterization and crosslinking of PAOs via coordination with transition metal ions such as Ni(II), Co(II), Cu(II), and UO2(II) are presented. The crosslinked polymer complexes exhibit good thermal stability. It was also found that both square planar and tetrahedral coordination structures are present in the crosslinked polymers.  相似文献   
15.
A novel strategy was developed for tailoring of SiO2 and TiO2 nanoparticle surfaces with poly(ε-caprolactone) (PCL). Thus, a self-curable polyester, poly(2-hydroxypropylene maleate) was adsorbed on the nanoparticle surfaces and heated to 180 °C to give a cross-linked polyester layer with residual hydroxyalkyl groups on their surfaces. Surface-initiated polymerization of ε-caprolactone from hydroxyalkyl groups on the surfaces yielded core-shell nanoparticles with cross-linked core and PCL shells (22.2–71.4%). The organic shell layers around the nanoparticle cores were evidenced by transmission electron microscopy, dynamic light scattering, and thermogravimetric analyses techniques. The core-shell nanoparticles were then employed in preparing the stable and the homogenous dispersions with poly(methyl methacrylate-stat-butyl acrylate) solutions. An application of the solutions onto glass substrates yielded uniform and nearly transparent free standing films (40–60 μm) with good homogeneity as inferred from scanning electron microscopy pictures.  相似文献   
16.
17.
We demonstrated the successful postfunctionalization of poly(oxanorbornene imide) (PONB) with two types of double bonds using sequential orthogonal reactions, nucleophilic thiol‐ene coupling via Michael addition and radical thiol‐ene click reactions. First, the synthesis of PONB with side chain acrylate groups is carried out via ring‐opening metathesis polymerization and nitroxide radical coupling reaction, respectively. Subsequently, the resulting polymer having two different orthogonal functionalities, main chain vinyl and side chain acrylate, is selectively modified via two sequential thiol‐ene click reactions, nucleophilic thiol‐ene coupling via Michael addition and photoinduced radical thiol‐ene. The orthogonal reactivity of two diverse double bonds, vinyl and acrylate functionalities, for the abovementioned consecutive thiol‐ene click reactions was first demonstrated on the model compound. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
18.
Multiarm star triblock terpolymers were obtained by using two different click reactions sequentially: Cu(I) catalyzed azide–alkyne and Diels–Alder. The synthetic strategy is described as follows: (poly(methyl methacrylate))n‐(polystyrene)m‐poly(divinyl benzene)) ((PMMA)n‐(PS)m‐polyDVB) multiarm star diblock copolymer was first obtained from an azide–alkyne click reaction of (alkyne‐PS)m‐polyDVB multiarm star polymer with α‐anthracene‐ω‐azide PMMA (anth‐PMMA‐N3), followed by a Diels–Alder click reaction of the anthracene groups at the star periphery with α‐maleimide poly (tert‐butyl acrylate) (PtBA‐MI) or α‐maleimide poly(ethylene glycol) (PEG‐MI) leading to target (PtBA)k‐(PMMA)n‐(PS)m‐polyDVB and (PEG)p‐(PMMA)n‐(PS)m‐polyDVB multiarm star triblock terpolymers. The hydrodynamic diameter of individual multiarm star triblock terpolymers were measured by dynamic light scattering (DLS) to be ~24–27 nm in consistent with the atomic force microscopy (AFM) images on silicon substrates. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1557–1564, 2010  相似文献   
19.
The controlled polymerization of methyl methacrylate (MMA) in bulk was initiated with p‐chlorobenzenediazonium tetrafluoroborate ( 1 ) and Cu(II) or Cu(I)/Cu(II)/N,N,N′,N″,N″‐pentamethyldietylene triamine (PMDETA) complex system at various temperatures (20, 60, and 90 °C). The proposed polymerization mechanism is based on the Meerwein‐type arylation reaction followed by a reverse atom transfer radical polymerization. In this mechanism, aryl radicals formed by the reaction with 1 and Cu(I) and/or PMDETA initiated the polymerization of MMA. The polymerization is controlled up to a molecular weight of 46,000 at 90 °C. Chain extension was carried out to confirm the controlled manner of the polymerization system. In all polymerization systems, the polydispersity index and initiator efficiency ranged from 1.10–1.57 to 0.10–0.21, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2019–2025, 2003  相似文献   
20.
Functional polymeric materials with desired properties can be designed by precise control of macromolecular architectures. Over the recent years, click reactions have enabled efficient synthesis of a variety of polymers with different topologies via efficient polymer–polymer conjugations. While the copper catalyzed Huisgen type (3+2) dipolar cycloaddition between azide and alkyne has been widely used toward this goal, the Diels–Alder (DA) reaction offers an alternative click reaction that allow efficient macromolecular conjugations, oftentimes without the need of any additional reagent or catalyst. This article highlights, with illustrative examples, the power of the DA “click” reaction to efficiently synthesize a variety of different well‐defined macromolecular constructs in a modular fashion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号