首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   19篇
化学   141篇
力学   2篇
数学   29篇
物理学   17篇
  2024年   1篇
  2023年   5篇
  2021年   13篇
  2020年   10篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   14篇
  2015年   8篇
  2014年   16篇
  2013年   9篇
  2012年   20篇
  2011年   9篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   10篇
  2006年   2篇
  2005年   6篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2000年   2篇
  1999年   3篇
  1995年   1篇
  1981年   1篇
  1979年   1篇
  1970年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
11.
The relativistic mean-field models tested in previous works against nuclear matter experimental values,critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energyγ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate theγ values, a trend of linear correlation is observed between γ and the symmetry energy(S_0) and a more clear linear relationship is established between γ and the slope of the symmetry energy(L_0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of R_(1.0) and R_(1.4), in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely,IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤M_(max)/M_☉≤2.05 and with the overlap band for the L_0 ×S_0 region, to present γ in the range of γ=0.25±0.05.  相似文献   
12.
Starting from the spectral analysis of g-circulant matrices, we study the convergence of a multigrid method for circulant and Toeplitz matrices with various size reductions. We assume that the size n of the coefficient matrix is divisible by g≥2 such that at the lower level the system is reduced to one of size n/g, by employing g-circulant based projectors. We perform a rigorous two-grid convergence analysis in the circulant case and we extend experimentally the results to the Toeplitz setting, by employing structure preserving projectors. The optimality of the two-grid method and of the multigrid method is proved, when the number θ∈ℕ of recursive calls is such that 1<θ<g. The previous analysis is used also to overcome some pathological cases, in which the generating function has zeros located at “mirror points” and the standard two-grid method with g=2 is not optimal. The numerical experiments show the correctness and applicability of the proposed ideas, both for circulant and Toeplitz matrices.  相似文献   
13.
The tensile properties and structure of silica-based polyurethane (PU) nanocomposites were parametrically studied as a function of silica type and weight concentration, polyol OH number, and mixing methods. The variation of the silica functionalization groups (from silanols to silazanes) had a relevant effect on dispersion. An elevated interparticle distance of the silica agglomerates improved substantially the tensile strength (from 44.3 to 82.8 MPa) and strain to failure (from 3.0 to 7.95) while maintaining elastic modulus (from 2.08 to 2.31 GPa) with respect to the neat PU matrix. Polyol’s with different OH numbers have shown to dramatically modify the silica dispersion degree by the modification of the stability of the colloidal dispersion. An increase of its value deteriorated dispersion and the tensile properties of the nanocomposites. The effect of three dispersion methods (ultrasonic dispersion, high shear mixing, and tip sonication) has shown to have a relative effect on the reduction of agglomerate size and the interparticle distance. High power sonication methods were more effective in reducing agglomerate size in contrast to shear methods. Classical theories of colloidal dispersion (Derjaguin, Landau, Verwey, and Overbeek) have been able to explain the correlation between the silica aggregation state and the final tensile properties of the nanocomposite.  相似文献   
14.
15.
This study was performed to investigate the physical–chemical characteristics of carvedilol (CRV), complemented by compatibility studies with a great variety of pharmaceutical excipients. Thermogravimetry and differential scanning calorimetry, supported by diffuse reflectance infrared fourier transform spectroscopy (DRIFT), X-ray powder diffraction, and scanning electron microscopy (SEM) were selected as the solid-state techniques for the intended analyses. In addition, non-isothermal methods were employed to investigate kinetic data of CRV decomposition process under nitrogen and air atmospheres. CRV is characterized by an endothermic sharp event (T peak = 389.81 K and ΔH fusion of ?176.28 J g?1) and a thermal decomposition behavior in two stages, totalizing 98 % of mass loss. The CRV pattern diffraction presents prominent peaks at 2θ: 5.92°, 14.90°, 18.62°, 24.47°, and 26.30°, and the DRIFT spectrum showed the main characteristics bands for CRV chemical functional groups. The SEM photomicrographs demonstrate that CRV is characterized by irregular blocky shaped crystals. Zero order kinetics was determined by Ozawa method in both nitrogen and air atmospheres. The compatibility results showed no evidence of any incompatibility among CRV and all the excipients analyzed.  相似文献   
16.
Inorganic lead halide perovskites have gained immense scientific interest for optoelectronic applications. In this work, we present a one-dimensional polymorph of cesium lead bromide (δ-CsPbBr3) synthesized through a simple anion-exchange reaction, wherein distorted edge-sharing PbBr6 octahedra form 1D chains isolated by Cs ions. δ-CsPbBr3 was characterized by Raman spectroscopy, X-ray diffraction, 207Pb and 133Cs solid-state NMR, and by optical emission and absorption spectroscopies. This non-perovskite material irreversibly transforms into the well-known three-dimensional perovskite phase (γ-CsPbBr3) upon heating to above 151 °C. The indirect bandgap was determined by absorption measurements and calculation to be 2.9 eV. δ-CsPbBr3 exhibits broadband yellow photoluminescence with a quantum yield of 3.2 %±0.2 % at room temperature and 95 %±5 % at 77 K, and this emission is attributed to the recombination of self-trapped excitons. This study emphasizes that the metastable δ-CsPbBr3 may be a persistent, concomitant phase in Cs−Pb-Br-containing materials systems, such as those used in solar cells and LEDs, and it showcases the characterization tools used for its detection.  相似文献   
17.
The application of single‐atom catalysts (SACs) to high‐temperature hydrogenation requires materials that thermodynamically favor metal atom isolation over cluster formation. We demonstrate that Pd can be predominantly dispersed as isolated atoms onto TiO2 during the reverse water–gas shift (rWGS) reaction at 400 °C. Achieving atomic dispersion requires an artificial increase of the absolute TiO2 surface area by an order of magnitude and can be accomplished by physically mixing a precatalyst (Pd/TiO2) with neat TiO2 prior to the rWGS reaction. The in situ dispersion of Pd was reflected through a continuous increase of rWGS activity over 92 h and supported by kinetic analysis, infrared and X‐ray absorption spectroscopies and scanning transmission electron microscopy. The thermodynamic stability of Pd under high‐temperature rWGS conditions is associated with Pd‐Ti coordination, which manifests upon O‐vacancy formation, and the artificial increase in TiO2 surface area.  相似文献   
18.
19.
20.
We consider the Cauchy problem for the 2×2 nonstrictly hyperbolic system
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号