首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   3篇
化学   90篇
力学   1篇
数学   1篇
物理学   10篇
  2020年   1篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   14篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   9篇
  2003年   10篇
  2002年   7篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1993年   2篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1972年   1篇
  1937年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
11.
Multifrequency continuous wave EPR spectra (4-34 GHz) on a powder of the title compound are consistent with a spin-triplet state. This arises from interaction between centrosymmetrically related pairs of copper(II) ions in the solid. The spectra at all frequencies have been simulated with a single set of spin-Hamiltonian parameters. The results show that there is noncoincidence between the principal axes of the g-matrices on each copper center and those of the zero-field splitting (D) tensor. This noncoincidence is a single rotation of 33 degrees +/- 2 degrees. The parameters from the powder spectra have been verified by a subsequent single-crystal EPR study which yielded the spin-Hamiltonian parameters g(XX) = 2.074, g(YY) = 2.093, g(ZZ) = 2.385, D(XX) = +/-0.0228 cm(-1), D(YY) = +/-0.0211 cm(-1), D(ZZ) = -/+0.0439 cm(-1) with Euler angles of alpha = 179 degrees, chi = 33.4 degrees, and gamma = 328 degrees. Analysis of the zero-field splitting tensor in terms of exchange indicates that the interaction between the pairs of copper(II) ions is almost entirely dipolar in origin. This study shows that multifrequency EPR spectroscopy on powders, coupled with spectrum simulation, can detect and measure noncoincidence between the principal axes of the g-matrix and zero-field splitting tensor, and does not necessarily require the presence of metal hyperfine interactions.  相似文献   
12.
Eight uranyl compounds containing the dicarboxylate ligands iminodiacetate (IDA) or oxydiacetate (ODA) have been characterized in the solid state. The published polymeric structures for [UO(2)(C(4)H(6)NO(4))(2)] and [UO(2)(C(4)H(4)O(5))](n) have been confirmed, while Ba[UO(2)(C(4)H(5)NO(4))(2)] x 3H(2)O, [(CH(3))(2)NH(CH(2))(2)NH(CH(3))(2)][UO(2)(C(4)H(4)O(5))(2)] [orthorhombic space group Pnma, a = 10.996(5) A, b = 21.42(1) A, c = 8.700(3) A, Z = 4], and [C(2)H(5)NH(2)(CH(2))(2)NH(2)C(2)H(5)][UO(2)(C(4)H(4)O(5))(2)] [monoclinic space group P2(1)/n, a = 6.857(3) A, b = 9.209(5) A, c = 16.410(7) A, beta = 91.69(3), Z = 2] contain monomeric anions. The distance from the uranium atom to the central heteroatom (O or N) in the ligand varies. Crystallographic study shows that U-heteroatom (O/N) distances fall into two groups, one 2.6-2.7 A in length and one 3.1-3.2 A, the latter implying no bonding interaction. By contrast, EXAFS analysis of bulk samples suggests that either a long U-heteroatom (O/N) distance (2.9 A) or a range of distances may be present. Three possible structural types, two symmetric and one asymmetric, are identified on the basis of these results and on solid-state (13)C NMR spectroscopy. The two ligands in the complex can be 1,4,7-tridentate, giving five-membered rings, or 1,7-bidentate, to form an eight-membered ring. (C(4)H(12)N(2))[(UO(2))(2)(C(4)H(5)NO(4))(2)(OH)(2)] x 8H(2)O [monoclinic space group P2(1)/a, a = 7.955(9) A, b = 24.050(8) A, c = 8.223(6) A, beta = 112.24(6), Z = 2], (C(2)H(10)N(2))[(UO(2))(2)(C(4)H(5)NO(4))(2)(OH)(2)] x 4H(2)O, and (C(6)H(13)N(4))(2)[(UO(2))(2)(C(4)H(4)O(5))(2)(OH)(2)] x 2H(2)O [monoclinic space group C2/m, a = 19.024(9) A, b = 7.462(4) A, c = 2.467(6) A, beta = 107.75(4), Z = 4] have a dimeric structure with two capping tridentate ligands and two mu(2)-hydroxo bridges, giving edge-sharing pentagonal bipyramids.  相似文献   
13.
Detailed chemical, spectroelectrochemical and computational studies have been used to investigate the mechanism of hypoxia selectivity of a range of copper radiopharmaceuticals. A revised mechanism involving a delicate balance between cellular uptake, intracellular reduction, reoxidation, protonation and ligand dissociation is proposed. This mechanism accounts for observed differences in the reported cellular uptake and washout of related copper bis(thiosemicarbazonato) complexes. Three copper and zinc complexes have been characterised by X-ray crystallography and the redox chemistry of a series of copper complexes has been investigated by using electronic absorption and EPR spectroelectrochemistry. Time-dependent density functional theory (TD-DFT) calculations have also been used to probe the electronic structures of intermediate species and assign the electronic absorption spectra. DFT calculations also show that one-electron oxidation is ligand-based, leading to the formation of cationic triplet species. In the absence of protons, metal-centred one-electron reduction gives the reduced anionic copper(I) species, [CuIATSM](-), and for the first time it is shown that molecular oxygen can reoxidise this anion to give the neutral, lipophilic parent complexes, which can wash out of cells. The electrochemistry is pH dependent and in the presence of stronger acids both chemical and electrochemical reduction leads to quantitative and rapid dissociation of copper(I) ions from the mono- or diprotonated complexes, [CuIATSMH] and [Cu(I)ATSMH2]+. In addition, a range of protonated intermediate species have been identified at lower acid concentrations. The one-electron reduction potential, rate of reoxidation of the copper(I) anionic species and ease of protonation are dependent on the structure of the ligand, which also governs their observed behaviour in vivo.  相似文献   
14.
We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= l,l,l,5,5,5-hexafluoropentane-2,4-dionate(l-)), acac (= pentane-2,4-dionate(l-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.  相似文献   
15.
The NiII complexes [Ni([9]aneNS2‐CH3)2]2+ ([9]aneNS2‐CH3=N‐methyl‐1‐aza‐4,7‐dithiacyclononane), [Ni(bis[9]aneNS2‐C2H4)]2+ (bis[9]aneNS2‐C2H4=1,2‐bis‐(1‐aza‐4,7‐dithiacyclononylethane) and [Ni([9]aneS3)2]2+ ([9]aneS3=1,4,7‐trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal NiIII products, which have been characterized by X‐ray crystallography, UV/Vis and multi‐frequency EPR spectroscopy. The single‐crystal X‐ray structure of [NiIII([9]aneNS2‐CH3)2](ClO4)6?(H5O2)3 reveals an octahedral co‐ordination at the Ni centre, while the crystal structure of [NiIII(bis[9]aneNS2‐C2H4)](ClO4)6?(H3O)3? 3H2O exhibits a more distorted co‐ordination. In the homoleptic analogue, [NiIII([9]aneS3)2](ClO4)3, structurally characterized at 30 K, the Ni? S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn–Teller distorted octahedral stereochemistry. [Ni([9]aneNS2‐CH3)2](PF6)2 shows a one‐electron oxidation process in MeCN (0.2 M NBu4PF6, 293 K) at E1/2=+1.10 V versus Fc+/Fc assigned to a formal NiIII/NiII couple. [Ni(bis[9]aneNS2‐C2H4)](PF6)2 exhibits a one‐electron oxidation process at E1/2=+0.98 V and a reduction process at E1/2=?1.25 V assigned to NiII/NiIII and NiII/NiI couples, respectively. The multi‐frequency X‐, L‐, S‐, K‐band EPR spectra of the 3+ cations and their 86.2 % 61Ni‐enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6 %, 42.8 % and 37.2 % Ni character in [Ni([9]aneNS2‐CH3)2]3+, [Ni(bis[9]aneNS2‐C2H4)]3+ and [Ni([9]aneS3)2]3+, respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S‐thioether centres. EPR spectra for [61Ni([9]aneS3)2]3+ are consistent with a dynamic Jahn–Teller distortion in this compound.  相似文献   
16.
[Ru2Mn(O)(O2CtBu)6(py)3] has an S=5/2 ground state with a very large zero‐field splitting (ZFS) of D=2.9 cm?1, as characterized by EPR spectroscopy at 4–330 GHz. This is far too large to be due to the MnII ion (D <0.2 cm?1), as shown from the {Fe2Mn} analogue, but can be modeled by antisymmetric exchange effects.  相似文献   
17.
Two pro-ligands ((R)LH) comprised of an o,p-di-tert-butyl-substituted phenol covalently bonded to a benzimidazole ((Bz)LH) or a 4,5-di-p-methoxyphenyl substituted imidazole ((PhOMe)LH), have been structurally characterised. Each possesses an intramolecular O-H[dot dot dot]N hydrogen bond between the phenolic O-H group and an imidazole nitrogen atom and (1)H NMR studies show that this bond is retained in solution. Each (R)LH undergoes an electrochemically reversible, one-electron, oxidation to form the [(R)LH] (+) radical cation that is considered to be stabilised by an intramolecular O...H-N hydrogen bond. The (R)LH pro-ligands react with M(BF(4))(2).H(2)O (M = Cu or Zn) in the presence of Et(3)N to form the corresponding [M((R)L)(2)] compound. [Cu((Bz)L)(2)] (), [Cu((PhOMe)L)(2)] (), [Zn((Bz)L)(2)] and [Zn((PhOMe)L)(2)] have been isolated and the structures of .4MeCN, .2MeOH, .2MeCN and .2MeCN determined by X-ray crystallography. In each compound the metal possesses an N(2)O(2)-coordination sphere: in .4MeCN and .2MeOH the {CuN(2)O(2)} centre has a distorted square planar geometry; in .2MeCN and .2MeCN the {ZnN(2)O(2)} centre has a distorted tetrahedral geometry. The X-band EPR spectra of both and , in CH(2)Cl(2)-DMF (9 : 1) solution at 77 K, are consistent with the presence of a Cu(ii) complex having the structure identified by X-ray crystallography. Electrochemical studies have shown that each undergo two, one-electron, oxidations; the potentials of these processes and the UV/vis and EPR properties of the products indicate that each oxidation is ligand-based. The first oxidation produces [M(II)((R)L)((R)L )](+), comprising a M(ii) centre bound to a phenoxide ((R)L) and a phenoxyl radical ((R)L ) ligand; these cations have been generated electrochemically and, for R = PhOMe, chemically by oxidation with Ag[BF(4)]. The second oxidation produces [M(II)((R)L )(2)](2+). The information obtained from these investigations shows that a suitable pro-ligand design allows a relatively inert phenoxyl radical to be generated, stabilised by either a hydrogen bond, as in [(R)LH] (+) (R = Bz or PhOMe), or by coordination to a metal, as in [M(II)((R)L)((R)L )](+) (M = Cu or Zn; R = Bz or PhOMe). Coordination to a metal is more effective than hydrogen bonding in stabilising a phenoxyl radical and Cu(ii) is slightly more effective than Zn(II) in this respect.  相似文献   
18.
A Th(IV) compound, [Th(TFSI)4(HTFSI)].2H2O [where TFSI = N(SO2CF3)2], has been synthesized and characterized using elemental analysis, thermogravimetric analysis, and vibrational spectroscopy. The analysis suggests that the TFSI anion coordinates to the metal center via the sulfonyl oxygens as well as provides evidence for the coordination of HTFSI. The voltammetric behavior of this compound has been studied in the room-temperature ionic liquid [Me3NnBu][TFSI], and results show that Th(IV) is reduced to Th(0) in this ionic liquid in a single reduction step. Analysis of cyclic voltammograms shows that an insoluble product is being formed at the electrode surface, which is attributed to the formation of ThO2 by reaction with water. The E0 value for the reduction of Th(IV) to Th(0) has been determined to be -2.20 V (vs Fc+/Fc; -1.80 V vs SHE). A comparison of this E0 value with those obtained for Th(IV) reduction in a LiCl-KCl eutectic (400 degrees C), water, and nonaqueous solvents shows that the reduction in [Me3NnBu][TFSI] is easier to accomplish than that in these other solvents.  相似文献   
19.
The synthesis and structural characterization of three heterometallic rings templated about imidazolium cations is reported. The compounds are [2,4‐DiMe‐ImidH][Cr7NiIIF8(O2CtBu)16] 1 (2,4‐DiMe‐ImidH=the cation of 2,4‐dimethylimidazole), [ImidH]2[Cr6NiII2F8(O2CCtBu)16] 2 (ImidH=the cation of imidazole), and [1‐Bz‐ImidH]2 [Cr7NiII2F9(O2CtBu)18] 3 (1‐Bz‐ImidH=the cation of 1‐benzylimidazole). The structures show the formation of octagonal arrays of metals for 1 and 2 and a nonagon of metal centers for 3 . In all cases the edges of the polygon are bridged by a single fluoride and two pivalate ligands, and the position of the divalent metal centers cannot be distinguished by X‐ray diffraction. Magnetic studies combined with EPR spectroscopy allow the characterization of the magnetic states of the compounds. In each case the exchange is antiferromagnetic with a magnetic exchange parameter J≈?5.8 cm?1, and it is not possible to differentiate the exchange between two CrIII centers (JCrCr) from the exchange between a CrIII and a NiII center (JCrNi). For 2 there is evidence for the presence of at least two, possibly four, linkage isomers of the heterometallic ring, caused by the presence of two divalent metal centers in the ring. The EPR spectroscopy of 3 suggests an S=1/2 ground state of the ring and that it is likely that only one linkage isomer is present.  相似文献   
20.
 To describe the flows of fluids over a wide range of pressures, it is necessary to take into account the fact that the viscosity of the fluid depends on the pressure. That the viscosity depends on the pressure has been verified by numerous careful experiments. While the existence of solutions local-in-time to the equations governing the flows of such fluids are available for small, special data and rather unrealistic dependence of the viscosity on the pressure, no global existence results are in place. Our interest here is to establish the existence of weak solutions for spatially periodic three-dimensional flows that are global in time, for a large class of physically meaningful viscosity-pressure relationships. (Accepted May 1, 2002) Published online November 15, 2002 Communicated by S. S. ANTMAN  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号