首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   7篇
化学   121篇
数学   1篇
物理学   22篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   15篇
  2011年   9篇
  2010年   10篇
  2009年   3篇
  2008年   9篇
  2007年   7篇
  2006年   8篇
  2005年   11篇
  2004年   4篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1984年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有144条查询结果,搜索用时 31 毫秒
21.
Recent photoemission experiments have measured E vs. k for a single hole propagating in antiferromagnetically aligned Sr2CuO2Cl2. Comparisons with (i) the t - t′ - J model, for which the carrier is a spinless vacancy, and (ii) a strong-coupling version of the three-band Emery model, for which the carrier is a S = 1/2 hole moving on the Oxygen sublattice, have demonstrated that if one wishes to describe the quasiparticle throughout the entire first Brillouin zone the three-band model is superior. Here we present a new variational wave function for a single Oxygen hole in the three-band model: it utilizes a classical representation of the antiferromagnetically ordered Cuspin background but explicitly includes the quantum fluctuations of the lowest energy doublet of the Cu-O-Cu bond containing the Oxygen hole. We find that this wave function leads to a quasiparticle dispersion for physical exchange and hopping parameters that is in excellent agreement with the measured ARPES data. We also obtain the average spin of the Oxygen hole, and thus deduce that this spin is only quenched to zero at certain wave vectors, helping to explain the inadequacy of the t - t′ - J model to match the experimentally observed dispersion relation everywhere in the first Brillouin zone.  相似文献   
22.
23.
24.
25.
26.
The 1,3-dithian-2-yl-methyl (Dim) and its analogous groups including dimethyl-Dim (dM-Dim) can provide a new dimension of orthogonality for carboxylic acid protection. They can be deprotected under nearly neutral oxidative conditions. In this paper, the protection of carboxylic acid with dM-Dim, deprotection of dM-Dim ester with sodium periodate, stability of dM-Dim protected carboxylic acid under acidic and basic conditions, and selective deprotection of dM-Dim protected carboxylic acids in the presence of tertiary butyl and methyl esters are presented.  相似文献   
27.
Achieving stability with highly active Ru nanoparticles for electrocatalysis is a major challenge for the oxygen evolution reaction. As improved stability of Ru catalysts has been shown for bulk surfaces with low‐index facets, there is an opportunity to incorporate these stable facets into Ru nanoparticles. Now, a new solution synthesis is presented in which hexagonal close‐packed structured Ru is grown on Au to form nanoparticles with 3D branches. Exposing low‐index facets on these 3D branches creates stable reaction kinetics to achieve high activity and the highest stability observed for Ru nanoparticle oxygen evolution reaction catalysts. These design principles provide a synthetic strategy to achieve stable and active electrocatalysts.  相似文献   
28.
Electron transfer (ET) rate kinetics through n-alkanethiol self-assembled monolayers (SAMs) of alkanethiols of different chain lengths [Me(CH2)nSH; n=8, 10, 11, 15] on Au and Hg surfaces and ferrocene (Fc)-terminated SAMs (poly-norbornylogous and HS(CH2)12CONHCH2Fc) on Au were studied using cyclic voltammetry and scanning electrochemical microscopy (SECM). The SECM results allow determination of the ET kinetics of solution-phase Ru(NH3)63+/2+ through the alkanethiol SAMs on Au and Hg. A model using the potential dependence of the measured rate constants is proposed to compensate for the pinhole contribution. Extrapolated values of koML for Ru(NH3)63+/2+ using the model follow the expected exponential decay (beta is 0.9) for different chain lengths. For a Fc-terminated poly-norbornyl SAM, the standard rate constant of direct tunneling (ko is 189+/-31 s(-1)) is in the same order as the ko value of HS(CH2)12CONHCH2Fc. In blocking and Fc SAMs, the rates of ET are demonstrated to follow Butler-Volmer kinetics with transfer coefficients alpha of 0.5. Lower values of alpha are treated as a result of the pinhole contribution. The normalized rates of ET are 3 orders of magnitude higher for Fc-terminated than for blocking monolayers. Scanning electron microscopy imaging of Pd nanoparticles electrochemically deposited in pinholes of blocking SAMs was used to confirm the presence of pinholes.  相似文献   
29.
Ebrahimi D  Chow E  Gooding JJ  Hibbert DB 《The Analyst》2008,133(8):1090-1096
A peptide-modified electrode array with a different peptide on each electrode is compared with a single electrode modified with many peptides for the voltammetric measurement of concentrations of Cu(2+), Cd(2+) and Pb(2+) in solution. The single gold electrode was modified simultaneously with peptides Gly-Gly-His, glutathione and angiotensin I each coupled to thioctic acid, and thioctic acid itself, and the calibration of mixtures of ions was compared with previously published data from an array of four sensors each with an individual modification. Calibration at the multi-peptide single-electrode sensor was by two-way partial least squares (voltammetric current measured with variables 'sample' x 'potential') and for the electrode array by three-way NPLS1 ('sample' x 'potential' x 'electrode'). The advantage of designing experiments to yield multi-way data is demonstrated and discussed.  相似文献   
30.
The characterization and application of a modified electrode interface for protein electrochemistry is reported. This generic interface is composed of a mixed monolayer of oligo(phenylethynylene) molecular wires (MWs) and poly(ethylene glycol) (PEG) deposited on glassy carbon electrodes by reductive adsorption of the respective aryl diazonium salts. Electrochemistry and scanning electron microscopy demonstrate that the PEG component exhibits a distinct decrease in nonspecific adsorption of blood serum and the proteins bovine serum albumin (BSA) and horseradish peroxidase (HRP) relative to a bare glassy carbon electrode. The ability of the MWs to facilitate efficient electron transfer through the PEG layer to the underlying electrode was demonstrated by covalently attaching ferrocenemethylamine to the end of the MWs. The calculated rate constant for this system was 229 +/- 30 s(-1). Covalent attachment of HRP to the MWs allowed direct electron transfer to the redox protein with almost ideal electrochemistry, indicating a specific interaction between the MW and HRP, with a rate constant of 13.4 +/- 2.3 s(-1). This rate constant is more rapid than previously reported for HRP shown to still be catalytically active. Retained catalytic activity of HRP was demonstrated by the enzyme responding to the addition of hydrogen peroxide. Similarly, by attaching myoglobin to the end of the MWs, a rate constant for this protein of 2 s(-1) was measured. The rigidity of the MWs, as well as it being longer than the PEG diluent, means this generic interface can be employed to investigate the electrochemistry of a wide range of redox proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号