首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2608篇
  免费   181篇
  国内免费   67篇
化学   2056篇
晶体学   30篇
力学   61篇
综合类   1篇
数学   188篇
物理学   520篇
  2023年   24篇
  2022年   20篇
  2021年   65篇
  2020年   69篇
  2019年   63篇
  2018年   45篇
  2017年   54篇
  2016年   113篇
  2015年   84篇
  2014年   121篇
  2013年   165篇
  2012年   242篇
  2011年   221篇
  2010年   154篇
  2009年   109篇
  2008年   164篇
  2007年   143篇
  2006年   147篇
  2005年   116篇
  2004年   107篇
  2003年   91篇
  2002年   91篇
  2001年   57篇
  2000年   66篇
  1999年   35篇
  1998年   28篇
  1997年   26篇
  1996年   19篇
  1995年   19篇
  1994年   11篇
  1993年   15篇
  1992年   14篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1978年   6篇
  1977年   5篇
  1976年   6篇
  1975年   7篇
  1974年   11篇
  1973年   8篇
  1971年   4篇
  1968年   5篇
排序方式: 共有2856条查询结果,搜索用时 15 毫秒
141.
To improve the performance of membrane electrode assemblies used in proton exchange membrane fuel cells, a better understanding is necessitated regarding the nano/microstructure of the catalyst layer and the physicochemical phenomena responsible for the oxygen reduction reaction (ORR) occurring on this layer. In particular, it is very important to understand catalyst/ionomer interfaces in the cathode catalyst layer to apply the advanced ORR catalysts to the cathode catalyst layer in membrane electrode assemblies, which have solid-phase electrolytes; these catalysts are primarily developed under liquid electrolyte conditions. A closer observation of the catalyst/ionomer interfacial structure shows that all the transport processes required for ORR are controlled by the ionomer thin film covering the catalyst. Therefore, this review addresses this issue and introduces recent studies on catalyst/ionomer interfaces. We discuss the current understanding of the structure of the catalyst/ionomer interface, which depends on the surface characteristics of the catalyst and the ionomer, as well as transport of water, ions, and gas; these factors are in turn dependent on the structure of the interface. In addition, we introduce research efforts for improving the properties of catalyst inks, which form the basis for controlling the catalyst/ionomer interfacial structure. Based on the findings of these studies, we propose further opportunities and challenges in the study of catalyst/ionomer interfaces.  相似文献   
142.
In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280–320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.  相似文献   
143.
Rational engineering and assimilation of diverse chemo‐ and biocatalytic functionalities in a single nanostructure is highly desired for efficient multistep chemical reactions but has so far remained elusive. Here, we design and synthesize multimodal catalytic nanoreactors (MCNRs) based on a mesoporous metal‐organic framework (MOF). The MCNRs consist of customizable metal nanocrystals and stably anchored enzymes in the mesopores, as well as coordinatively unsaturated cationic metal MOF nodes, all within a single nanoreactor space. The highly intimate and diverse catalytic mesoporous microenvironments and facile accessibility to the active site in the MCNR enables the cooperative and synergistic participation from different chemo‐ and biocatalytic components. This was shown by one‐pot multistep cascade reactions involving a heterogeneous catalytic nitroaldol reaction followed by a [Pd/lipase]‐catalyzed chemoenzymatic dynamic kinetic resolution to yield optically pure (>99 % ee) nitroalcohol derivatives in quantitative yields.  相似文献   
144.
Hierarchical self‐assembly of building blocks over multiple length scales is ubiquitous in living organisms. Microtubules are one of the principal cellular components formed by hierarchical self‐assembly of nanometer‐sized tubulin heterodimers into protofilaments, which then associate to form micron‐length‐scale, multi‐stranded tubes. This peculiar biological process is now mimicked with a fully synthetic molecule, which forms a 1:1 host‐guest complex with cucurbit[7]uril as a globular building block, and then polymerizes into linear poly‐pseudorotaxanes that associate laterally with each other in a self‐shape‐complementary manner to form a tubular structure with a length over tens of micrometers. Molecular dynamic simulations suggest that the tubular assembly consists of eight poly‐pseudorotaxanes that wind together to form a 4.5 nm wide multi‐stranded tubule.  相似文献   
145.
Considering the instability and low photoluminescence quantum yield (PLQY) of blue‐emitting perovskites, it is still challenging and attractive to construct single crystalline hybrid lead halides with highly stable and efficient blue light emission. Herein, by rationally introducing d10 transition metal into single lead halide as new structural building unit and optical emitting center, we prepared a bimetallic halide of [(NH4)2]CuPbBr5 with new type of three‐dimensional (3D) anionic framework. [(NH4)2]CuPbBr5 exhibits strong band‐edge blue emission (441 nm) with a high PLQY of 32 % upon excitation with UV light. Detailed photophysical studies indicate [(NH4)2]CuPbBr5 also displays broadband red light emissions derived from self‐trapped states. Furthermore, the 3D framework features high structural and optical stabilities at extreme environments during at least three years. To our best knowledge, this work represents the first 3D non‐perovskite bimetallic halide with highly efficient and stable blue light emission.  相似文献   
146.
147.
148.
The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25–200 μg/mL) and incubation time (0–72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).  相似文献   
149.
150.
Reducing the strain in brittle device layers is critical in the fabrication of robust flexible electronic devices. In this study, the cracking behavior of micro-patterned 500-nm-thick Ti films was investigated via uniaxial tensile testing by in situ SEM and 4-point probe measurements. Both visual observations by SEM and 4-pt resistance measurements showed that strategically patterned oval holes, off-set and rotated by 45°, had a significant effect on limiting the extent of cracking, specifically, in preventing cracks from converging. Failure with regard to electrical conduction was delayed from less than 2% to more than 10% strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号