首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2892篇
  免费   113篇
  国内免费   21篇
化学   2341篇
晶体学   28篇
力学   23篇
数学   187篇
物理学   447篇
  2023年   19篇
  2022年   8篇
  2021年   29篇
  2020年   36篇
  2019年   57篇
  2018年   34篇
  2017年   32篇
  2016年   67篇
  2015年   76篇
  2014年   73篇
  2013年   137篇
  2012年   192篇
  2011年   219篇
  2010年   131篇
  2009年   117篇
  2008年   211篇
  2007年   195篇
  2006年   153篇
  2005年   166篇
  2004年   175篇
  2003年   137篇
  2002年   144篇
  2001年   42篇
  2000年   50篇
  1999年   42篇
  1998年   36篇
  1997年   26篇
  1996年   36篇
  1995年   31篇
  1994年   31篇
  1993年   30篇
  1992年   24篇
  1991年   25篇
  1990年   21篇
  1989年   20篇
  1988年   16篇
  1987年   15篇
  1986年   24篇
  1985年   31篇
  1984年   24篇
  1983年   8篇
  1982年   12篇
  1981年   10篇
  1980年   9篇
  1979年   8篇
  1978年   5篇
  1975年   7篇
  1974年   6篇
  1973年   9篇
  1972年   5篇
排序方式: 共有3026条查询结果,搜索用时 15 毫秒
141.
The design of siloxane‐based nanoparticles is important for many applications. Here we show a novel approach to form core–shell silica nanoparticles of a few nanometers in size through the principle of “dispersion of ordered mesostructures into single nanocomponents”. Self‐assembled siloxane–organic hybrids derived from amphiphilic alkyl‐oligosiloxanes were postsynthetically dispersed in organic solvent to yield uniform nanoparticles consisting of dense lipophilic shells and hydrophilic siloxane cores. In situ encapsulation of fluorescent dyes into the nanoparticles demonstrated their ability to function as nanocarriers.  相似文献   
142.
This report describes the photochemical behavior of single‐walled carbon nanotubes (SWNTs) in the presence of propylamine. The SWNTs are characterized by absorption and Raman spectroscopy. The spectral changes due to photoirradiation indicate that reactions occur predominantly with the metallic SWNTs and small‐diameter SWNTs. The detection of amine radicalcation species by ESR spectroscopy reveals photoinduced electron transfer from the amine to the excited SWNTs. After exposure of the photoirradiated SWNTs to air, the characteristic spectra were recovered, except for that of the small‐diameter SWNTs. The results suggest that, after photoreduction of the SWNTs, subsequent selective sidewall functionalization of the small‐diameter SWNTs occurs.  相似文献   
143.
Liquid vinyl monomers were converted into solid crystals via halogen bonding. They underwent solid-phase radical polymerizations through heating at 40 °C or ultraviolet photo-irradiation (365 nm). The X-ray crystallography analysis showed the high degree of monomer alignment in the crystals. The polymerizations of the solid monomer crystals yielded polymers with high molecular weights and relatively low dispersities because of the high degree of the monomer alignment in the crystal. As a unique application of this system, the crystalized monomers were assembled to pre-determined structures, followed by solid-phase polymerization, to obtain a two-layer polymer sheet and a three-dimensional house-shaped polymer material. The two-layer sheet contained a unique asymmetric pore structure and exhibited a solvent-responsive shape memory property and may find applications to asymmetric membranes and polymer actuators.  相似文献   
144.
A series of assembled PtII complexes comprising N-heterocyclic carbene and cyanide ligands was constructed using different substituent groups, [Pt(CN)2(R-impy)] (R-impyH+=1-alkyl-3-(2-pyridyl)-1H-imidazolium, R=Me ( Pt-Me ), Et ( Pt-Et ), iPr ( Pt- i Pr ), and tBu ( Pt- t Bu )). All the complexes exhibited highly efficient photoluminescence with an emission quantum yield of 0.51–0.81 in the solid state at room temperature, originating from the triplet metal-metal-to-ligand charge transfer (3MMLCT) state. Their emission colors cover the entire visible region from red for Pt-Me to blue for Pt- t Bu . Importantly, Pt- t Bu is the first example that exhibits blue 3MMLCT emission. The 3MMLCT emission was proved and characterized based on the temperature dependences of the crystal structures and emission properties. The wide-range color tuning of luminescence using the 3MMLCT emission presents a new strategy of superfine control of the emission color.  相似文献   
145.
Journal of Solid State Electrochemistry - Rapid methods using batch injection analysis (BIA) with amperometric detection were developed for the determination of quercetin extracted from the...  相似文献   
146.
Various cathinone‐derived designer drugs (CATs) have recently appeared on the drug market. This study examined the mechanism for the generation of dehydrated ions for CATs during electrospray ionization collision‐induced dissociation (ESI‐CID). The generation mechanism of dehydrated ions is dependent on the amine classification in the cathinone skeleton, which is used in the identification of CATs. The two hydrogen atoms eliminated during the dehydration of cathinone (primary amine) and methcathinone (secondary amine) were determined, and the reaction mechanism was elucidated through the deuterium labeling experiments. The hydrogen atom bonded to the amine nitrogen was eliminated with the proton added during ESI, in both of the tested compounds. This provided evidence that CATs with tertiary amine structures (such as dimethylcathinone and α‐pyrrolidinophenones [α‐PPs]) do not undergo dehydration. However, it was shown that the two major tertiary amine metabolites (1‐OH and 2″‐oxo) of CATs generate dehydrated ions in ESI‐CID. The dehydration mechanisms of the metabolites of α‐pyrrolidinobutiophenone (α‐PBP) belongs to α‐PPs were also investigated. Stable‐isotope labeling showed the dehydration of the 1‐OH metabolite following a simple mechanism where the hydroxy group was eliminated together with the proton added during ESI. In contrast, the dehydration mechanism of the 2″‐oxo metabolite involved hydrogen atoms in three or more locations along with the carbonyl group oxygen, indicating that dehydration occurred via multiple mechanisms likely including the rearrangement reaction of hydrogen atoms. These findings presented herein indicate that the dehydrated ions in ESI‐CID can be used for the structural identification of CATs.  相似文献   
147.
Lolitrems are tremorgenic indole diterpenes that exhibit a unique 5/6 bicyclic system of the indole moiety. Although genetic analysis has indicated that the prenyltransferase LtmE and the cytochrome P450 LtmJ are involved in the construction of this unique structure, the detailed mechanism remains to be elucidated. Herein, we report the reconstitution of the biosynthetic pathway for lolitrems employing a recently established genome‐editing technique for the expression host Aspergillus oryzae. Heterologous expression and bioconversion of the various intermediates revealed that LtmJ catalyzes multistep oxidation to furnish the lolitrem core. We also isolated the key reaction intermediate with an epoxyalcohol moiety. This observation allowed us to establish the mechanism of radical‐induced cyclization, which was firmly supported by density functional theory calculations and a model experiment with a synthetic analogue.  相似文献   
148.
149.
We study spectral distortions of diffuse ultra-high energy (UHE) neutrino flavour fluxes resulting due to physics beyond the Standard Model (SM). Even large spectral differences between flavours at the source are massaged into a common shape at earth by SM oscillations, thus, any significant observed spectral differences are an indicator of new physics present in the oscillation probability during propagation. Lorentz symmetry violation (LV) and neutrino decay are examples, and result in significant distortion of the fluxes and of the well-known bounds on them, which may allow UHE detectors to probe LV parameters, lifetimes and the mass hierarchy over a broad range.  相似文献   
150.
Ueda  Chiaki  Okita  Atsushi  Tanaka  Go  Suetake  Noriaki  Uchino  Eiji 《Optical Review》2017,24(3):442-447
Optical Review - A novel color removal method for digital color images is proposed. In this method, differences of colors in an input color image are reflected effectively, and the perceived...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号