首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   612篇
  免费   28篇
化学   530篇
力学   3篇
数学   42篇
物理学   65篇
  2024年   1篇
  2023年   3篇
  2021年   3篇
  2020年   19篇
  2019年   16篇
  2018年   6篇
  2017年   3篇
  2016年   22篇
  2015年   28篇
  2014年   26篇
  2013年   31篇
  2012年   39篇
  2011年   34篇
  2010年   25篇
  2009年   28篇
  2008年   34篇
  2007年   39篇
  2006年   35篇
  2005年   34篇
  2004年   35篇
  2003年   29篇
  2002年   24篇
  2001年   22篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   11篇
  1996年   6篇
  1995年   10篇
  1994年   5篇
  1993年   7篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
排序方式: 共有640条查询结果,搜索用时 15 毫秒
31.
The mechanical characterization of complex soft matter by quasi-static magnetometry using nanoscopic magnetic probes is demonstrated for model hydrogels doped with two types of elongated magnetic nanoparticles. Chemically crosslinked poly(acrylamide) (PAAm) hydrogels serve as the matrix in which nickel nanorods or weakly magnetized hematite (α-Fe2O3) ellipsoids are embedded as local probes. We investigated the swelling behavior of the ferrogels in order to verify that their equilibrium swelling degree in water is not influenced by the probes, shows a good correlation with the Frenkel–Flory–Rehner model. The proposed magnetomechanical method relies on a correlation between the shear modulus of the PAAm hydrogel matrix and the coercive fields of the corresponding isotropic ferrogels. By extending the Stoner–Wohlfarth model for single-domain blocked magnetic particles by a term for particle rotation in an elastic matrix, information on the shear modulus of the matrix can be obtained. Comparison of the results with the expected relation from rubber elasticity theory illustrates both the general potential as well as the limits of the approach. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
32.
33.
A cheap synthesis of the so‐called ‘decalin‐1,8‐diones’ started with the conjugate (1,4‐) addition of cyclohex‐2‐en‐1‐one derivatives to the γ‐position of the dilithium derivative (buta‐1,3‐diene‐1,1‐bis(olate)) of crotonic acid. Hydrogenation of these ‘1,4‐γ’ adducts and final cyclization afforded the enol tautomers of decalin‐1,8‐diones. Nucleophilic substitutions at these 3‐oxoenols by NH3 or primary amines created only monoamino products (namely, 3‐oxoenamines) whose reactions with OPCl3 yielded dihydro(1,3,2)oxazaphosphinin‐2‐one derivatives. The two regioisomers of a trimethyl‐3‐oxoenamine served as models for the constitutional assignments of the two rapidly interconverting (hence, individually NMR‐invisible), tautomeric trimethyl‐3‐oxoenols. Such methyl substitutions served to break the ‘pretended’ symmetry of ‘decalin‐1,8‐dione’. Hydrazine and 3‐oxoenols furnished oxygen‐free indazole derivatives whose N?H bonds exchanged with t1/2=ca. 0.00035 s at ca. ?58(9) °C.  相似文献   
34.
35.
Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm?2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.  相似文献   
36.
37.
The effect of the gas‐phase chemical potential on surface chemistry and reactivity of molybdenum carbide has been investigated in catalytic reactions of propane in oxidizing and reducing reactant mixtures by adding H2, O2, H2O, and CO2 to a C3H8/N2 feed. The balance between surface oxidation state, phase stability, carbon deposition, and the complex reaction network involving dehydrogenation reactions, hydrogenolysis, metathesis, water‐gas shift reaction, hydrogenation, and steam reforming is discussed. Raman spectroscopy and a surface‐sensitive study by means of in situ X‐ray photoelectron spectroscopy evidence that the dynamic formation of surface carbon species under a reducing atmosphere strongly shifts the product spectrum to the C3‐alkene at the expense of hydrogenolysis products. A similar response of selectivity, which is accompanied by a boost of activity, is observed by tuning the oxidation state of Mo in the presence of mild oxidants, such as H2O and CO2, in the feed as well as by V doping. The results obtained allow us to draw a picture of the active catalyst surface and to propose a structure–activity correlation as a map for catalyst optimization.  相似文献   
38.
39.
We present a theoretical and experimental study of the structure and nuclear magnetic resonance (NMR) parameters of the pentacarbonyltungsten complexes of η1‐2‐(trimethylstannyl)‐4,5‐dimethylphosphinine, η2‐norbornene, and imidazolidine‐2‐thione. The three complexes have a pseudo‐octahedral molecular structure with the six ligands bonded to the tungsten atom. The η1‐2‐(trimethylstannyl)‐4,5‐dimethylphosphinine‐pentacarbonyl tungsten complex was synthesized for the first time. For all compounds, we present four‐component relativistic calculations of the NMR parameters at the Dirac–Kohn–Sham density functional level of theory using hybrid functionals. These large‐scale relativistic calculations of NMR chemical shifts and spin–spin coupling constants were compared with available experimental data, either taken from the literature or measured in this work. The inclusion of solvent effects modeled using a conductor‐like screening model was found to improve agreement between the calculated and experimental NMR parameters, and our best estimates for the NMR parameters are generally in good agreement with available experimental results. The present work demonstrates that four‐component relativistic theory has reached a level of maturity that makes it a convenient and accurate tool for modeling and understanding chemical shifts and indirect spin–spin coupling constants of organometallic compounds containing heavy elements, for which conventional non‐relativistic theory breaks down. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
40.
We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号