首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   55篇
  国内免费   2篇
化学   1137篇
晶体学   11篇
力学   5篇
数学   106篇
物理学   135篇
  2024年   1篇
  2023年   11篇
  2022年   41篇
  2021年   118篇
  2020年   40篇
  2019年   34篇
  2018年   34篇
  2017年   31篇
  2016年   68篇
  2015年   44篇
  2014年   64篇
  2013年   119篇
  2012年   122篇
  2011年   108篇
  2010年   85篇
  2009年   60篇
  2008年   78篇
  2007年   58篇
  2006年   74篇
  2005年   71篇
  2004年   31篇
  2003年   31篇
  2002年   23篇
  2001年   15篇
  2000年   8篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有1394条查询结果,搜索用时 62 毫秒
991.
A simple method of preparation of new high surface area spherical carbon adsorbents is presented. The phosphoric acid activation upon hydrothermally formed spherules was employed to produce carbons having controlled high specific surface area (over 2100m(2)/g), large volumes of pores (1.2cm(3)/g), and high acidity. Prepared from sucrose materials show high adsorption capacities (i.e. 220mg/g(C)) toward paracetamol. It is proved that for these materials the contents of surface phosphorus are responsible for the reversibility of drug adsorption/release process.  相似文献   
992.
Microphase separated epoxy-based materials modified with an amphiphilic poly(styrene-block-ethylene oxide) diblock copolymer (PS-b-PEO) with low amount of PEO-block as well as ternary systems modified with this block copolymer and containing via sol–gel in situ synthesized TiO2 nanoparticles were prepared and characterized. The obtained results indicate that block copolymer had enough amount of PEO-block in order to achieve microphase separated materials for a high range of PS-b-PEO contents, morphologies changing from spherical micelles to long wormlike micelles passing through vesicles upon increasing copolymer amounts. In the case of 20 wt.% inorganic/organic epoxy-based materials, addition of synthesized TiO2 nanoparticles into PS-b-PEO-(DGEBA/MCDEA) system led to location of the nanoparticles in PEO-block/epoxy-rich confined between two microphase separated PS-block-rich phases. Designed highly transparent multiphase inorganic/organic epoxy-based materials possess interesting specific properties such as high UV shielding efficiency and high water repellence.  相似文献   
993.
The dependence of 14N quadrupole coupling constants calculated using coupled cluster theory on the level of approximation is examined for a series of small molecules. For HCN, HNC, CH3CN, and CH3NC, we use the coupled cluster singles‐and‐doubles with a noniterative perturbative triples correction—CCSD(T)—approach, and we analyze the basis set dependence of the results. For aziridine, diazirine, and cyclopropyl cyanide, we use the CCSD(T) approach, but smaller basis sets, and for the largest studied molecules—quinuclidine and hexamine—we present CCSD results. The differences between computed and experimental values for the best basis sets used are ≈ 5% at the CCSD level and decrease noticeably at the CCSD(T) level. The ‐ N≡C bonds are an exception—in this case the quadrupole coupling constants are very small, hence the differences between theory and experiment become larger (up to 9%). We also consider the performance of density functional theory, comparing the results for different density functionals with the coupled cluster values of the same constants. Most of the functionals provide results systematically improved with respect to the Hartree–Fock values, with 14N coupling constants in ‐ N≡C bonds being again an exception. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
994.
In this study we report on the electronic contributions to the linear and nonlinear static electronic electric dipole properties, namely the dipole moment (μ), the polarizability (α), and the first-hyperpolarizability (β), of spatially confined LiH molecule in its ground X (1)Σ(+) state. The finite-field technique is applied to estimate the corresponding energy and dipole moment derivatives with respect to external electric field. Various forms of confining potential, of either spherical or cylindrical symmetry, are included in the Hamiltonian in the form of one-electron operator. The computations are performed at several levels of approximation including the coupled-cluster methods as well as multi-configurational (full configuration interaction) and explicitly correlated Gaussian wavefunctions. The performance of Kohn-Sham density functional theory for the selected exchange-correlation functionals is also discussed. In general, the orbital compression effects lead to a substantial reduction in all the studied properties regardless of the symmetry of confining potential, however, the rate of this reduction varies depending on the type of applied potential. Only in the case of dipole moment under a cylindrical confinement a gradual increase of its magnitude is observed.  相似文献   
995.
The adsorption of three dextrins (a regular wheat dextrin, Dextrin TY, carboxymethyl (CM) Dextrin, and hydroxypropyl (HP) Dextrin) on molybdenite has been investigated using adsorption isotherms, tapping mode atomic force microscopy (TMAFM), contact angle measurements, and dynamic bubble-surface collisions. In addition, the effect of the polymers on the flotation recovery of molybdenite has been determined. The isotherms revealed the importance of molecular weight in determining the adsorbed amounts of the polymers on molybdenite at plateau coverage. TMAFM revealed the morphology of the three polymers, which consisted of randomly dispersed domains with a higher area fraction of surface coverage for the substituted dextrins. The contact angle of polymer-treated molybdenite indicated that polymer layer coverage and hydration influenced the mineral surface hydrophobicity. Bubble-surface collisions indicated that the polymers affected thin film rupture and dewetting rate differently, correlating with differences in the adsorbed layer morphology. Direct correlations were found between the surface coverage of the adsorbed layers, their impact on thin film rupture time, and their impact on flotation recovery, highlighting the paramount role of the polymer morphology in the bubble/particle attachment process and subsequent flotation.  相似文献   
996.
We present the new results of systematic studies of paracetamol adsorption on closed, commercially available, unmodified carbon nanotubes. The results of thermal analysis, static adsorption measurements and the comparison with phenol adsorption data lead to suggestion that the formation of paracetamol nanoaggregates in the interstitial spaces between nanotubes occurs. This effect is also confirmed by the results of (performed in two ways) independent dynamic measurements and by molecular dynamics simulation technique. Next, we show that the behavior of adsorbed paracetamol during heating leads to the creation of a new drug delivery system. The properties of this system depend on the type of applied nanotubes and the parameters of the process called hot-melt drug deposition. Thus, we conclude that confined nanoaggregate formation, as well as hot-melt deposition should be promising effects in the preparation of highly effective, new drug delivery systems.  相似文献   
997.
The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250–500 µg/mL, 20–21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 μg/mL).  相似文献   
998.
mTHPC is a non polar photosensitizer used in photodynamic therapy. To improve its solubility and pharmacokinetic properties, liposomes were proposed as drug carriers. Binding of liposomal mTHPC to serum proteins and stability of drug carriers in serum are of major importance for PDT efficacy; however, neither was reported before. We studied drug binding to human serum proteins using size‐exclusion chromatography. Liposomes destruction in human serum was measured by nanoparticle tracking analysis (NTA). Inclusion of mTHPC into conventional (Foslip®) and PEGylated (Fospeg®) liposomes does not affect equilibrium serum protein binding compared with solvent‐based mTHPC. At short incubation times the redistribution of mTHPC from Foslip® and Fospeg® proceeds by both drug release and liposomes destruction. At longer incubation times, the drug redistributes only by release. The release of mTHPC from PEGylated vesicles is delayed compared with conventional liposomes, alongside with greatly decreased liposomes destruction. Thus, for long‐circulation times the pharmacokinetic behavior of Fospeg® could be influenced by a combination of protein‐ and liposome‐bound drug. The study highlights the modes of interaction of photosensitizer‐loaded nanovesicles in serum to predict optimal drug delivery and behavior in vivo in preclinical models, as well as the novel application of NTA to assess the destruction of liposomes.  相似文献   
999.
Two aromatic retinoids were synthesized from styrene derivatives using a novel strategy with a cross-metathesis reaction as a key step. The biological activity of the new etretinate analogues was tested. Cross-metathesis reactions were also employed for the preparation of ethyl retinoate and its 9Z-isomer via the C15 + C5 route.  相似文献   
1000.
N-Acyl-α-amino acids were efficiently transformed in a two-step procedure into 1-N-(acylamino)alkyltriphenylphosphonium salts, new powerful α-amidoalkylating agents. The effect of the α-amino acid structure, the base used [MeONa or a silica gel-supported piperidine (SiO(2)-Pip)], and the main electrolysis parameters (current density, charge consumption) on the yield and selectivity of the electrochemical decarboxylative α-methoxylation of N-acyl-α-amino acids (Hofer-Moest reaction) was investigated. For most proteinogenic and all studied unproteinogenic α-amino acids, very good results were obtained using a substoichiometric amount of SiO(2)-Pip as the base. Only in the cases of N-acylated cysteine, methionine, and tryptophan, attempts to carry out the Hofer-Moest reaction in the applied conditions failed, probably because of the susceptibility of these α-amino acids to an electrochemical oxidation on the side chain. The methoxy group of N-(1-methoxyalkyl)amides was effectively displaced with the triphenylphosphonium group by dissolving an equimolar amount of N-(1-methoxyalkyl)amide and triphenylphosphonium tetrafluoroborate in CH(2)Cl(2) at room temperature for 30 min, followed by the precipitation of 1-N-(acylamino)alkyltriphenylphosphonium salt with Et(2)O.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号