首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24928篇
  免费   10篇
  国内免费   234篇
化学   7089篇
晶体学   215篇
力学   1854篇
综合类   1篇
数学   8114篇
物理学   7899篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1965篇
  2017年   2232篇
  2016年   957篇
  2015年   631篇
  2014年   512篇
  2013年   643篇
  2012年   1797篇
  2011年   1044篇
  2010年   29篇
  2009年   124篇
  2008年   99篇
  2007年   87篇
  2006年   100篇
  2005年   5807篇
  2004年   5632篇
  2003年   3113篇
  2002年   237篇
  2001年   28篇
  2000年   12篇
  1999年   18篇
  1998年   66篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1940年   1篇
  1934年   1篇
  1925年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The discovery of selective cyclooxygenase-2 (COX-2) inhibitors represents a major achievement of the efforts over the past few decades to develop therapeutic treatments for inflammation. To gain insights into designing new COX-2-selective inhibitors, we address the energetic and structural basis for the selective inhibition of COX isozymes by means of a combined computational protocol involving docking experiment, force field design for the heme prothetic group, and free energy perturbation (FEP) simulation. We consider both COX-2- and COX-1-selective inhibitors taking the V523I mutant of COX-2 to be a relevant structural model for COX-1 as confirmed by a variety of experimental and theoretical evidences. For all COX-2-selective inhibitors under consideration, we find that free energies of binding become less favorable as the receptor changes from COX-2 to COX-1, due to the weakening and/or loss of hydrogen bond and hydrophobic interactions that stabilize the inhibitors in the COX-2 active site. On the other hand, COX-1-selective oxicam inhibitors gain extra stabilization energy with the change of residue 523 from valine to isoleucine because of the formations of new hydrogen bonds in the enzyme-inhibitor complexes. The utility of the combined computational approach, as a valuable tool for in silico screening of COX-2-selective inhibitors, is further exemplified by identifying the physicochemical origins of the enantiospecific selective inhibition of COX-2 by -substituted indomethacin ethanolamide inhibitors.  相似文献   
42.
The computation of the energy eigenvalues of the one-dimensional time-independent Schrödinger equation is considered. Exponentially fitted and trigonometrically fitted symplectic integrators are obtained, by modification of the first and second order Yoshida symplectic methods. Numerical results are obtained for the one-dimensional harmonic oscillator and Morse potential.AMS subject classification: 65L15Funding by research project 71239 of Prefecture of Western Macedonia and the E.U. is gratefully acknowledged.  相似文献   
43.
TiO2 powders were prepared by sol–gel template method and calcined under different conditions. XRD, BET and TEM were used to characterize the TiO2 powders obtained. The photocatalytic activity of TiO2 was investigated by the degradation of methyl orange. It was found that TiO2 powder has the highest photocatalytic activity at a calcination temperature of 673 K. The effects of physical properties such as surface area, crystallinity and crystal phase on the photocatalytic activity of TiO2 were discussed.  相似文献   
44.
45.
Isothermal titration calorimetry (ITC) measurements of the mixture of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) with negatively charged, hairy copolymer latices (poly-(2,3-epoxypropylmethacrylate-co-methacrylic acid) in different ratio) at high water excess indicate a monomer adsorption mechanism of CTAB by the polymer particles. The number of adsorbed CTAB molecules at saturation corresponds approximately to the number of negative elementary charges bound at the surface of the latices. The mixing enthalpy is the sum of demicellization and sorption enthalpies. At 25 °C for CTAB the demicellization enthalpy amounts to 10 kJ/mol, whereas the adsorption enthalpy varies from –7 kJ/mol (surface charge density of the latices =–0.37 C/m2) to +3 kJ/mol (=–0.085 C/m2). The hydrodynamic radius RH of the latex particles upon titration of cationic detergent and salt (NaBr) decreases by about 2 nm until the onset of aggregation near the isoelectric point. Titration of nonionic or anionic detergents has much less influence on the hydrodynamic radius and produces no measurable adsorption heat. The results are consistent within a model of latex particles with extended negatively charged polymer chains interacting predominantly via Coulombic forces with detergents.  相似文献   
46.
Controlling the reduction in molecular weight of the cellulose chains is essential in the production of carboxymethyl cellulose (CMC). Such a reduction can be achieved by the addition of cobalt during the process of cobalt(II) ions, which act as a catalyst for oxidative cleavage, and the influence thereof has been studied under a variety of conditions. This study has resulted in a model that summarises the effects of the added amount of cobalt, the time for the cobalt reaction, the temperature in the mercerisation stage of the CMC-manufacturing process and finally the effect of the temperature in the etherification stage. It is shown that it is important for cobalt to be present during the mercerisation stage in order to achieve the desired viscosity.  相似文献   
47.
The title compound, (isopropylxanthato)(phenyl)mercury(I), was synthesized and characterized by elemental analysis, IR and thermogravimetric analysis. Density functional theory (DFT) method calculations were performed at B3LYP/CEP-121G and B3LYP/CEP-31G levels of theory, respectively. Vibrational frequencies were predicted, assigned, compared with the experimental values, and they are supported each other. The calculated results show that the strength of bond Hg—C is stronger than that of Hg—S, which is good agreement with the experimental data. The calculations of the second order optical nonlinearity and electronic absorption spectra are also performed.  相似文献   
48.
Cucurbituril a molecular container (or host) has a rigid hollow interior cavity which is large enough to accommodate, one or more, smaller molecules (or guests). The cavity is accessible through two carbonyl portal openings. Molecules or guests enter the …  相似文献   
49.
This paper reports the results of a variety of experiments carried out for understanding the solvation behavior of potassium thiocyanate in methanol–water mixtures. Electrical conductivity, speed of sound, viscosity, and FT-Raman spectra of potassium thiocyanate solutions in 5 and 10% methanol–water (w/w) mixtures were measured as functions of concentration and temperature. The conductivity and structural relaxation time suggest the ion–solvent and solvent-separated ion–ion associations increase as the salt concentration increases in the mixtures. The Raman band shifts due to the C–O stretching mode of methanol for the solvent mixtures reveal the formation of methanol–water complexes. The significant changes in the Raman bands for the C–N, C–S and O–H stretching modes indicate the presence of SCN−solvent interactions through the N-end, “free” SCN and the solvent-shared ion pairs as potassium thiocyanate is added to the methanol–water mixtures. The relative changes corresponding to H–O–H bending and C–O stretching frequencies indicate that K+ is preferentially solvated by water in these solvent mixtures. The appearance and increase of the intensity of a broad band at ≈940 cm−1 upon salt addition was attributed to the SCN–H2O–K+ solvent-shared ion pairs. No Raman spectral evidence for K+(H2O)n species was observed. The preferential solvation of K+ and SCN in the methanol−water mixtures was verified by the application of the Kirkwood−Buff theory of solutions. This theory confirms that K+ is strongly preferentially solvated by water, whereas SCN is preferentially solvated by the methanol component.  相似文献   
50.
Summary. The formation equilibria for the binary complexes of CoII, NiII, CuII, ZnII, CdII, MnII, PbII, ThIV, UO2II, and CeIII with tricine and for the ternary complexes involving some -amino acids (glycine, -alanine, proline, serine, asparagine, and aspartic acid) were investigated using pH-metric technique. The formation of binary and ternary complexes was inferred from the pH-metric titration curves. It was deduced that tricine acts as a primary ligand in the ternary complexes involving the monocarboxylic amino acids (glycine, -alanine, proline, serine, and asparagine), whereas it behaves as a secondary ligand in the ternary systems containing the dicarboxylic aspartic acid. The ternary complex formation was found to take place in a stepwise manner. The stability constants of the complexes formed in aqueous solutions were determined potentiometrically under the experimental conditions (t=25°C, I=0.1moldm–3 NaNO3). The order of stability of the ternary complexes in terms of the nature of the amino acids is investigated and discussed. The values of log K for the ternary complexes have been evaluated and discussed. Evaluation of the effects of ionic strength and temperature of the medium on the stability of the ternary system MII-tricine--alanine (MII=CoII, NiII, and CuII) has been studied. The thermodynamic parameters were calculated and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号