首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4241篇
  免费   678篇
  国内免费   507篇
化学   3237篇
晶体学   47篇
力学   285篇
综合类   24篇
数学   438篇
物理学   1395篇
  2024年   13篇
  2023年   119篇
  2022年   114篇
  2021年   175篇
  2020年   234篇
  2019年   203篇
  2018年   190篇
  2017年   129篇
  2016年   252篇
  2015年   192篇
  2014年   248篇
  2013年   282篇
  2012年   396篇
  2011年   431篇
  2010年   261篇
  2009年   298篇
  2008年   281篇
  2007年   249篇
  2006年   195篇
  2005年   177篇
  2004年   137篇
  2003年   103篇
  2002年   107篇
  2001年   71篇
  2000年   73篇
  1999年   73篇
  1998年   73篇
  1997年   62篇
  1996年   73篇
  1995年   29篇
  1994年   41篇
  1993年   26篇
  1992年   24篇
  1991年   21篇
  1990年   21篇
  1989年   18篇
  1988年   15篇
  1987年   3篇
  1986年   6篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1979年   2篇
  1974年   1篇
  1957年   3篇
排序方式: 共有5426条查询结果,搜索用时 15 毫秒
101.
We report the structural properties of ultra-small ThO2 and UO2 nanoparticles (NPs), which were synthesized without strong binding surface ligands by employing a covalent organic framework (COF-5) as an inert template. The resultant NPs were used to observe how structural properties are affected by decreasing grain size within bulk actinide oxides, which has implications for understanding the behavior of nuclear fuel materials. Through a comprehensive characterization strategy, we gain insight regarding how structure at the NP surface differs from the interior. Characterization using electron microscopy and small-angle X-ray scattering indicates that growth of the ThO2 and UO2 NPs was confined by the pores of the COF template, resulting in sub-3 nm particles. X-ray absorption fine structure spectroscopy results indicate that the NPs are best described as ThO2 and UO2 materials with unpassivated surfaces. The surface layers of these particles compensate for high surface energy by exhibiting a broader distribution of Th–O and U–O bond distances despite retaining average bond lengths that are characteristic of bulk ThO2 and UO2. The combined synthesis and physical characterization efforts provide a detailed picture of actinide oxide structure at the nanoscale, which remains highly underexplored compared to transition metal counterparts.

ThO2 and UO2 nanoparticles synthesized using a COF-5 template exhibit unpassivated surfaces and provide insight into nanoscale properties of actinides.  相似文献   
102.
Heterocycles have been widely used in organic synthesis, agrochemical, pharmaceutical and materials science industries. Catalytic three-component ylide formation/cycloaddition enables the assembly of complex heterocycles from simple starting materials in a highly efficient manner. However, asymmetric versions remain a yet-unsolved task. Here, we present a new bimetallic catalytic system for tackling this challenge. A combined system of Rh(ii) salt and chiral N,N′-dioxide–Sm(iii) complex was established for promoting the unprecedented tandem carbonyl ylide formation/asymmetric [4 + 3]-cycloaddition of aldehydes and α-diazoacetates with β,γ-unsaturated α-ketoesters smoothly, affording various chiral 4,5-dihydro-1,3-dioxepines in up to 97% yield, with 99% ee. The utility of the current method was demonstrated by conversion of products to optically active multi-substituted tetrahydrofuran derivatives. A possible reaction mechanism was provided to elucidate the origin of chiral induction based on experimental studies and X-ray structures of catalysts and products.

Catalytic asymmetric tandem carbonyl ylide formation/[4 + 3]-cycloaddition of β,γ-unsaturated α-ketoesters, aldehydes and α-diazoacetates was achieved by using a bimetallic rhodium(ii)/chiral N,N′-dioxide–Sm(iii) complex catalyst.  相似文献   
103.
Copper complexes are promising anticancer agents widely studied to overcome tumor resistance to metal-based anticancer drugs. Nevertheless, copper complexes per se encounter drug resistance from time to time. Adenosine-5′-triphosphate (ATP)-responsive nanoparticles containing a copper complex CTND and B-cell lymphoma 2 (Bcl-2) small interfering RNA (siRNA) were constructed to cope with the resistance of cancer cells to the complex. CTND and siRNA can be released from the nanoparticles in cancer cells upon reacting with intracellular ATP. The resistance of B16F10 melanoma cells to CTND was terminated by silencing the cellular Bcl-2 gene via RNA interference, and the therapeutic efficacy was significantly enhanced. The nanoparticles triggered a cellular autophagy that amplified the apoptotic signals, thus revealing a novel mechanism for antagonizing the resistance of copper complexes. In view of the extensive association of Bcl-2 protein with cancer resistance to chemotherapeutics, this strategy may be universally applicable for overcoming the ubiquitous drug resistance to metallodrugs.

Bcl-2-related tumor resistance to anticancer drugs can be overcome by silencing the cellular Bcl-2 gene via RNA interference. The realization of the goal is exemplified by delivering Bcl-2 siRNA and a tumor-resistant Cu complex to cancer cells with an ATP-responsive nanocarrier.  相似文献   
104.
The structures and magnetic properties of self-assembled copper(II) clusters and grids with the "tritopic" ligands 2poap (a), Cl2poap (b), m2poap (c), Cl2pomp (d), and 2pomp (e) are described [ligands derived by reaction of 4-R-2,6-pyridinedicarboxylic hydrazide (R = H, Cl, MeO) with 2-pyridinemethylimidate (a-c, respectively) or 2-acetylpyridine (d, R = Cl; e, R = H)]. Cl2poap and Cl2pomp self-assemble with Cu(NO(3))(2) to form octanuclear "pinwheel" cluster complexes [Cu(8)(Cl2poap-2H)(4)(NO(3))(8)].20H(2)O (1) and [Cu(8)(Cl2pomp-2H)(4)(NO(3))(8)].15H(2)O (2), built on a square [2 x 2] grid with four pendant copper arms, using "mild" reaction conditions. Similar reactions of Cl2pomp and 2pomp with Cu(ClO(4))(2) produce pinwheel clusters [Cu(8)(Cl2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8).7H(2)O (3) and [Cu(8)(2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8) (4), respectively. Heating a solution of 1 in MeOH/H(2)O produces a [3 x 3] nonanuclear square grid complex, [Cu(9)(Cl2poap-H)(3)(Cl2poap-2H)(3)](NO(3))(9).18H(2)O (5), which is also produced by direct reaction of the ligand and metal salt under similar conditions. Reaction of m2poap with Cu(NO(3))(2) produces only the [3 x 3] grid [Cu(9)(m2poap-H)(2)(m2poap-2H)(4)](NO(3))(8).17H(2)O (6) under similar conditions. Mixing the tritopic ligand 2poap with pyridine-2,6-dicarboxylic acid (picd) in the presence of Cu(NO(3))(2) produces a remarkable mixed ligand, nonanuclear grid complex [Cu(9)(2poap-H)(4)(picd-H)(3)(picd-2H)](NO(3))(9).9H(2)O (7), in which aromatic pi-stacking interactions are important in stabilizing the structure. Complexes 1-3 and 5-7 involve single oxygen atom (alkoxide) bridging connections between adjacent copper centers, while complex 4 has an unprecedented mixed micro-(N-N) and micro-O metal ion connectivity. Compound 1 (C(76)H(92)N(44)Cu(8)O(50)Cl(4)) crystallizes in the tetragonal system, space group I, with a = 21.645(1) A, c = 12.950(1) A, and Z = 2. Compound 2 (C(84)H(88)N(36)O(44)Cl(4)Cu(8)) crystallizes in the tetragonal system, space group I, with a = 21.2562(8) A, c = 12.7583(9) A, and Z = 2. Compound 4 (C(84)H(120)N(28)O(66)Cl(8)Cu(8)) crystallizes in the tetragonal system, space group I4(1)/a, with a = 20.7790(4) A, c = 32.561(1) A, and Z = 4. Compound 7(C(104)H(104)N(46)O(56)Cu(9)) crystallizes in the triclinic system, space group P, with a = 15.473(1) A, b = 19.869(2) A, c = 23.083(2) A, alpha = 88.890(2) degrees, beta = 81.511(2) degrees, gamma = 68.607(1) degrees, and Z = 2. All complexes exhibit dominant intramolecular ferromagnetic exchange coupling, resulting from an orthogonal bridging arrangement within each polynuclear structure.  相似文献   
105.
Scaling of electrokinetic transport in nanometer channels   总被引:1,自引:0,他引:1  
Electrokinetic transport is a popular transport mechanism used in nanofluidic systems, and understanding its scaling behavior is important for the design and optimization of nanofluidic devices. In this article, we report on the scaling of electroosmotic flow and ionic conductivity in positively charged slit nanochannels by using continuum and atomistic simulations. The effects of confinement and surface charge are discussed in detail. In particular, we found that the viscosity of the interfacial water increases substantially as the surface charge density increases and the electrophoretic mobility of the interfacial ions decreases. We show that such effects can influence the scaling of the electrokinetic transport in confined nanochannels significantly.  相似文献   
106.
The electrochemical behavior of the molybdenum complex of -benzoinoxime was investigated using cyclic voltammetry and linear scan voltammetry, after adsorptive accumulation of the complex onto a hanging mercury drop electrode (HMDE). The signal corresponds to the reduction of molybdenum in the complex adsorbed at the HMDE surface. Under optimal conditions, the adsorptive stripping voltammetric procedure gave an extremely low detection limit of 0.1 nM (9.6ng/l) Mo(VI) following stirred accumulation for 5 min at 0.0 V (vs. Ag/AgCl). The reduction cur rent-[Mo(VI)] relationships were linear up to 25 and 100 nM. Repetitive determinations of 10 nM solutions gave relative standard deviations of 2.2 and 3.5%, for 1 and 5-min accumulation periods, respectively. Most of the ions investigated did not interfere with the determination of molybdenum, except for tungsten. Excellent selectivity against copper was observed. The proposed procedure was applied to the direct determination of molybdenum in natural water.  相似文献   
107.
The long-chain alkyl derivatives of a nucleoside analogue-acyclovir were prepared in the paper. One is stearyl-glycero-succinyl-acyclovir (SGSA) with a single 18-carbon length (C18) alkyl chain. Another is dioctadecyl-aspartate-succinyl-acyclovir (DASA) with double C18 alkyl chains. They were prepared by the esterification of succinyl-acyclovir with the lipids, and sodium salts of them were also prepared. Guanine moieties and alkyl moieties bring the derivatives intermolecular hydrogen bonding and hydrophobic interaction in water separately. The forces are influenced by the number of alkyl chains and the charged state, and determine the solubility and the self-assembly behavior of the derivatives. The double alkyl-chain derivatives (DASA and DASA-Na) formed rigid Langmuir monolayers on air/water surface, while the single alkyl chain derivatives (SGSA and SGSA-Na) did not. However, cholesterol (Chol) could assist SGSA to form rigid monolayers through inserting into the alkyl chains of SGSA to mimic the second alkyl chain. SGSA self-aggregates in water were prepared by the injection method with tetrahydrofuran as solvent. Cuboid-like shape and nanoscale size demonstrated that SGSA self-aggregates were self-assembled nanoparticles. Shape, particle size, zeta potential and phase transition of the nanoparticles were characterized. And they showed an average size of 83.2 nm, a negative surface charge of -31.3-mV zeta potential and a gel-liquid crystalline phase transition of 50.38 degrees C. The formation mechanism of self-assembled nanoparticles was analyzed. Hydrophobic interaction of alkyl chains improves SGSA molecules to form bilayers, and then cuboid-like nanoparticles were obtained by layer-by-layer aggregation based on inter-bilayers hydrogen bonding. However, the charged guanine moieties make SGSA-Na lose the function of hydrogen bonding so that SGSA-Na only forms vesicles in water based on hydrophobic interaction. Strong hydrophobicity and wide-open rigid double alkyl chains of DASA and DASA-Na restrict self-assembly in water media, and no homogeneous suspensions were obtained. Therefore, the molecular self-assembly behavior of the long-chain alkyl derivatives of nucleoside analogues on water surface or in water media is determined by the number of alkyl chains and the charged state.  相似文献   
108.
The stereoselective synthesis of (2R,4R)-2-N-tert-butyloxycarbonyl amino-4,5-epoxido-valeric acid methyl ester 8,which is the key intermediate for the synthesis of (2′S,2R)-3-trans-nitrocyclopropyl-alanine,was first accomplished.  相似文献   
109.
应用原子吸收分光光度法对济南市健康老年人血清中铜、锌、镁含量进行了测定。结果表明,健康老年人血液铜、锌水平低,但铜、锌比值正常,而镁的含量则较高。提示这组健康老年人未患心、脑血管疾病及糖尿病的原因可能与铜、锌、镁等微量元素有关。  相似文献   
110.
A novel fluorinated epoxy resin, 1,1-bis(4-glycidylesterphenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane (BGTF), was synthesized through a four-step procedure, which was then cured with hexahydro-4-methylphthalic anhydride (HMPA) and 4,4′-diaminodiphenyl-methane (DDM). As comparison, a commercial available epoxy resin, bisphenol A diglycidyl ether (BADGE), cured with the same curing agents was also investigated. We found that the BGTF gave the exothermic starting temperature lower than BADGE no mater what kind of curing agents applied, implying the reactivity of the former is higher than the latter. The fully cured fluorinated BGTF epoxy resins have good thermal stability with glass transition temperature of 170-175 °C and thermal decomposition temperature at 5% weight loss of 370-382 °C in nitrogen. The fluorinated BGTF epoxy resins also showed the mechanical properties as good as the commercial BADGE epoxy resins. The cured BGTF epoxy resins exhibited improved dielectric properties as compared with the BADGE epoxy resins with the dielectric constants and the dissipation factors lower than 3.3 and dissipation 2.8 × 10−3, respectively, which is related to the low polarizability of the C-F bond and the large free volume of CF3 groups in the polymer. The BGTF epoxy resins also gave low water absorption because of the existence of hydrophobic fluorine atom.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号