首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   4篇
化学   37篇
晶体学   1篇
数学   8篇
物理学   9篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   3篇
  2011年   10篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有55条查询结果,搜索用时 203 毫秒
31.
Synthesis of a new class of heteroleptic samarium aryloxide complexes has been achieved by the use of homoleptic samarium(II) bis(aryloxide) Sm(OAr)(2)(THF)(3) (1, Ar = C(6)H(2)Bu(t)(2)-2,6-Me-4) as a starting material, which is easily obtained by reaction of Sm(N(SiMe(3))(2))(2)(THF)(2) with 2 equiv of ArOH in THF. 1 reacts with 1 equiv of SmI(2) in THF to give Sm(II) mixed aryloxide/iodide [(ArO)Sm(&mgr;-I)(THF)(3)](2) (2), which adopts a dimeric structure via very weak Sm.I (3.534(2) ?) interactions. Reaction of 2 with C(5)Me(5)K in THF/HMPA affords the corresponding Sm(II) aryloxide/cyclopentadienide (C(5)Me(5))Sm(OAr)(HMPA)(2) (3). Oxidation of 1 with 0.5 equiv of I(2) in THF gives monomeric samarium(III) aryloxide/iodide (ArO)(2)SmI(THF)(2) (4), while the similar reaction of 1 with ClCH(2)CH(2)Cl or (t)BuCl in THF affords dimeric samarium(III) aryloxide/chloride [(ArO)(2)Sm(&mgr;-Cl)(THF)](2) (5). Crystal data for 1: monoclinic, space group P2(1), a = 9.903(3) ?, b = 16.718(5) ?, c = 13.267(2) ?, beta = 95.17(2) degrees, V = 2187(2) ?(3), Z = 2, D(c) = 1.223 g cm(-)(3), R = 0.0634. Crystal data for 2.2THF: monoclinic, space group P2(1)/a, a = 18.330(6) ?, b = 14.320(4) ?, c = 13.949(3) ?, beta = 103.16(2) degrees, V = 3563(2) ?(3), Z = 2, D(c) = 1.46 g cm(-)(3), R = 0.0606. Crystal data for 3: triclinic, space group P&onemacr;, a = 10.528(1) ?, b = 12.335(2) ?, c = 19.260(2) ?, alpha = 101.33(1) degrees, beta = 95.230(9) degrees, gamma = 108.54(1) degrees, V = 2293.1(5) ?(3), Z = 2, D(c) = 1.25 g cm(-)(3), R = 0.0358. Crystal data for 4: monoclinic, space group C2/c, a = 17.191(7) ?, b = 10.737(6) ?, c = 21.773(7) ?, beta = 98.80(3) degrees, V = 3971(3) ?(3), Z = 4, D(c) = 1.44 g cm(-)(3), R = 0.0467. Crystal data for 5: monoclinic, space group P2(1)/n, a = 13.750(3) ?, b = 17.231(3) ?, c = 14.973(6) ?, beta = 95.81(2) degrees, V = 3529(2) ?(3), Z = 2, D(c) = 1.31 g cm(-)(3), R = 0.0557.  相似文献   
32.
A method has been devised that creates a planar Ni(II) site from a tetrahedral site in a NiFe(3)S(4) cubane-type cluster. Reaction of [(Ph(3)P)NiFe(3)S(4)(LS(3))](2)(-) (2) with 1,2-bis(dimethylphosphino)ethane affords [(dmpe)NiFe(3)S(4)(LS(3))](2)(-) (3), isolated in ca. 45% yield as (Et(4)N)(2)[3a].2.5MeCN and (Et(4)N)(2)[3b].0.25MeCN, both of which occur in triclinic space group P. Each crystalline form contains two crystallographically inequivalent clusters with the same overall structure but slightly different dimensions. The cluster is bound by three thiolate terminal ligands to semirigid cavitand ligand LS(3). The NiFe(3)S(4) core contains three tetrahedral sites, one Fe(micro(3)-S)(3)(SR) and two Fe(micro(3)-S)(2)(micro(2)-S)(SR) with normal metric features, and one distorted square planar Ni(micro(3)-S)(2)P(2) site in a Ni(micro(3)-S)(2)Fe face with mean bond lengths Ni-P = 2.147(9) A and Ni-S = 2.29(2) A. The opposite Fe(2)(micro(3)-S)(micro(2)-S) face places the micro(2)-S atom at nonbonding and variable distances (2.60-2.90 A) above the nickel atom. Binding of the strong-field ligand dmpe results in a planar Ni(II) site and deconstruction of the full cubane geometry. The structure approximates that established crystallographically in the C-cluster of C. hydrogenoformans carbon monoxide dehydrogenase whose NiFe(4)S(4) core contains a planar NiS(4) site and three tetrahedral FeS(4) sites in a fragment that is bridged by sulfide atoms to an exo iron atom. M?ssbauer studies of polycrystalline samples containing both clusters 3a and 3b reveal the presence of at least two cluster types. The spectroscopically best defined cluster accounts for ca. 54% of total iron and exhibits hyperfine interactions quite similar to those reported for the S = (5)/(2) state of the protein-bound cubane-type cluster [ZnFe(3)S(4)](1+), whose M?ssbauer spectrum revealed the presence of a high-spin Fe(2+) site and a delocalized Fe(2.5+)Fe(2.5+) pair. Development of reactions leading to a planar nickel and a sulfide-bridged iron atom is requisite to attainment of a synthetic analogue of this complex protein-bound cluster. This work demonstrates a tetrahedral (2) --> planar (3) Ni(II) stereochemical conversion can be effected by binding of ligands that generate a sufficiently strong in-plane ligand field (dmpe = 1,2-bis(dimethylphosphino)ethane, LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-)).  相似文献   
33.
The concept of directly using imidazolium salts (IMSs) as mild reducing and antioxidative reagents was proposed and investigated. A simple and robust protocol for the synthesis of stable, ultrafine gold nanoparticles has been established using IMSs under mild conditions. IMSs showed remarkably lower toxicity but greater antioxidative power than N-acetyl-L-cystein and (-)-epigallocatechin gallate on HSC-T6 cells. These studies demonstrate that the simple and inexpensive IMSs represent a new type of antioxidant with potential biomedical applications.  相似文献   
34.
A dramatic concentration effect on the stereoselectivity of N-glycosylation, which is attributable to a low-concentration-facilitated remote-participation, has been disclosed, leading to convenient synthesis of the 2'-deoxy-β-ribonucleosides of biological significance.  相似文献   
35.
36.
37.
A method for the synthesis of propargylic amines has been developed via an efficient copper(I)-catalyzed three-component coupling reaction of alkynes, benzal halides and amines through C-H and C-halogen activation. This reaction is conducted under mild conditions and provides an alternative method for the synthesis of propargylic amines.  相似文献   
38.
39.
Members of the cluster set [(Tp)2Mo2Fe6S8L4]z contain the core unit M2Fe6(mu3-S)6(mu4-S)2 in which two MoFe3S4 cubanes are coupled by two Fe-(mu4-S) interactions to form a centrosymmetric edge-bridged double cubane cluster. Some of these clusters are synthetic precursors to [(Tp)2Mo2Fe6S9L2]3-, which possess the same core topology as the P(N) cluster of nitrogenase. In this work, the existence of a three-member electron-transfer series of single cubanes [(Tp)MoFe3S4L3](z) (z = 3-, 2-, 1-) and a four-member series of double cubanes [(Tp)2Mo2Fe6S8L4]z (z = 4-, 3-, 2-, 1-) with L = F-, Cl-, N3, PhS- is demonstrated by electrochemical methods, cluster synthesis, and X-ray structure determinations. The potential of the [4-/3-] couple is extremely low (<-1.5 V vs SCE in acetonitrile) such that the 4- state cannot be maintained in solution under normal anaerobic conditions. The chloride double cubane redox series was examined in detail. The members [(Tp)2Mo2Fe6S8Cl4]4-,3-,2- were isolated and structurally characterized. The redox series includes the reversible steps [4-/3-] and [3-/2-]. Under oxidizing conditions, [(Tp)2Mo2Fe6S8Cl4]2- cleaves with the formation of single cubane [(Tp)MoFe3S4Cl3]1-. The quasireversible [2-/1-] couple is observed at more positive potentials than those of the single cubane redox step. Structure comparison of nine double cubanes suggests that significant dimensional changes pursuant to redox reactions are mainly confined to the Fe2(mu4-S)2 bridge rhomb. The synthesis and structure of [(Tp)2Mo2Fe6S9F2.H2O]3-, a new topological analogue of the P(N) cluster of nitrogenase, is described. (Tp = hydrotris(pyrazolyl)borate(1-)).  相似文献   
40.
Gold standard: The title gold complex was characterized unambiguously as an important intermediate in the title reaction. Protonolysis of this vinyl gold(I) complex was critical for regeneration of the active gold(I) species for the catalytic cycle, and use of a protic acid co-catalyst significantly lowered the required catalyst loading to 0.5?mol?%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号