首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   6篇
化学   76篇
力学   1篇
数学   7篇
物理学   28篇
  2021年   2篇
  2020年   2篇
  2019年   6篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   6篇
  2012年   13篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   9篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
101.
The overall rate constant for the radical-radical reaction C2H5 + HO2 --> products has been determined at room temperature by means of time-resolved mass spectrometry using a laser photolysis/flow reactor combination. Excimer laser photolysis of gas mixtures containing ethane, hydrogen peroxide, and oxalyl chloride was employed to generate controlled concentrations of C2H5 and HO2 radicals by the fast H abstraction reactions of the primary radicals Cl and OH with C2H6 and H2O2, respectively. By careful adjustments of the radical precursor concentrations, the title reaction could be measured under almost pseudo-first-order conditions with the concentration of HO2 in large excess over that of C2H5. From detailed numerical simulations of the measured concentration-time profiles of C2H5 and HO2, the overall rate constant for the reaction was found to be k1(293 K) = (3.1 +/- 1.0) x 10(13) cm3 mol(-1) s(-1). C2H5O could be confirmed as a direct reaction product.  相似文献   
102.
The complexation properties of the open-chain N2S2 ligands 1–4 are described and compared to those of analogous N2S2 macrocycles 5–7 . With Cu2+, the open-chain ligands give complexes with the stoichiometry CuL2+ and CuLOH+, the stabilities and absorption spectra of which have been determined. The ligand field exerted by these ligands is relatively constant and independent of the length of the chain. With Cu+, the species CuLH, CuLH2+, and CuL+ were identified and their stabilities measured. The redox potentials calculated from the equilibrium constants and measured by cyclic voltammetry agree and lie between 250 and 280 mV against SHE. The comparison between open-chain and cyclic ligands shows that (1) a macrocyclic effect is found for Cu2+ but not for Cu+, (2) the ligand-field strength is very different for the two types of ligands, and (3) the redox potentials span a larger interval for the macrocyclic than for the open-chain complexes.  相似文献   
103.
We demonstrate the generation of highly structured porous solids from liquid foam templates, using ordered foam layers and threads made from hydrogels. For this purpose we separate sufficiently foam generation and solidification: well known and highly controllable liquid foam structures are created, which are thereafter ‘frozen’ in situ through polymerisation and cross-linking. Being extendible to a large range of materials and length scales, such an approach opens up a plethora of opportunities in material development.  相似文献   
104.
Biaryl compounds are ubiquitous metabolites that are often formed by dimerization through oxidative phenol coupling. Hindered rotation around the biaryl bond can cause axial chirality. In nature, dimerizations are catalyzed by oxidative enzymes such as laccases. This class of enzymes is known for non‐specific oxidase reactions while inherent enantioselectivity is hitherto unknown. Here, we describe four related fungal laccases that catalyze γ‐naphthopyrone dimerization in a regio‐ and atropselective manner. In vitro assays revealed that three enzymes were highly P‐selective (ee >95 %), while one enzyme showed remarkable flexibility. Its selectivity for M‐ or P‐configured dimers varied depending on the reaction conditions. For example, a lower enzyme concentration yielded primarily (P)‐ustilaginoidin A, whereas the M atropisomer was favored at higher concentration. These results demonstrate inherent enantioselectivity in an enzyme class that was previously thought to comprise only non‐selective oxidases.  相似文献   
105.
106.
107.
108.
Protein adsorption is a field of huge interest in a number of application fields. Information on protein adhesion is accessible by a variety of methods. However, the results obtained are significantly influenced by the applied technique. The objective of this work was to understand the role of adhesion forces (obtained by scanning force spectroscopy, SFS) in the process of protein adsorption and desorption. In SFS, the protein is forced to and retracted from the surface, even under unfavorable conditions, in contrast to the natural situation. Furthermore, adhesion forces are correlated with adhesion energies, neglecting the entropic part in the Gibbs enthalpy. In this context, dynamic contact angle (DCA) measurements were performed to identify the potential of this method to complement SFS data. In DCA measurements, the protein diffuses voluntarily to the surface and information on surface coverage and reversibility of adsorption is obtained, including entropic effects (conformational changes and hydrophobic effect). It could be shown that the surface coverage (by DCA) of bovine serum albumin on dental materials correlates well with the adhesion forces (by SFS) if no hydrophobic surface is involved. On those, the entropic hydrophobic effect plays a major role. As a second task, the reversibility of the protein adsorption, i.e., the voluntary desorption as studied by DCA, was compared to the adhesion forces. Here, a correlation between low adhesion forces and good reversibility could be found as long as no covalent bonds were involved. The comparative study of DCA and SFS, thus, leads to a more detailed picture of the complete adsorption/desorption cycle.  相似文献   
109.
The European XFEL and DESY Photon Science Users' Meeting 2015 broke the attendance record of the previous year. In total, more than 800 scientists from around the world came to Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany, to participate in this three-day event, which took place on January 28–30, 2015. In particular, the latest news about the construction of the European XFEL facility as well as the extension projects at DESY's synchrotron source PETRA III and the Free-Electron Laser FLASH attracted a lot of interest.  相似文献   
110.
The mechanism of hydrogen recombination on a Pd(111) single crystal and well‐defined Pd nanoparticles is studied using pulsed multi‐molecular beam techniques and the H2/D2 isotope exchange reaction. The focus of this study is to obtain a microscopic understanding of the role of subsurface hydrogen in enhancing the associative desorption of molecular hydrogen. HD production from H2 and D2 over Pd is investigated using pulsed molecular beams, and the temperature dependence and reaction orders are obtained for the rate of HD production under various reaction conditions designed to modulate the amount of subsurface hydrogen present. The experimental data are compared to the results of kinetic modeling based on different mechanisms for hydrogen recombination. We found that under conditions where virtually no subsurface hydrogen species are present, the HD formation rate can be described exceptionally well by a classic Langmuir–Hinshelwood model. However, this model completely fails to reproduce the experimentally observed high HD formation rates and the reaction orders under reaction conditions where subsurface hydrogen is present. To analyze this phenomenon, we develop two kinetic models that account for the role of subsurface hydrogen. First, we investigate the possibility of a change in the reaction mechanism, where recombination of one subsurface and one surface hydrogen species (known as a breakthrough mechanism) becomes dominant when subsurface hydrogen is present. Second, we investigate the possibility of the modified Langmuir–Hinshelwood mechanism with subsurface hydrogen lowering the activation energy for recombination of two hydrogen species adsorbed on the surface. We show that the experimental reaction kinetics can be well described by both kinetic models based on non‐Langmuir–Hinshelwood‐type mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号