首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
化学   4篇
力学   1篇
数学   36篇
物理学   13篇
  2020年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2012年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1967年   2篇
  1966年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
11.
We prove the hydrodynamical limit for weakly asymmetric simple exclusion processes. A large deviation property with respect to this limit is established for the symmetric case. We treat also the situation where a slow reaction (creation and annihilation of particles) is present.  相似文献   
12.
13.
This work is concerned with the existence and uniqueness of a strong Markov process that has continuous sample paths and the following additional properties:
  • (i) The state space is an infinite two-dimensional wedge, and the process behaves in the interior of the wedge like an ordinary Brownian motion.
  • (ii) The process reflects instantaneously at the boundary of the wedge, the angle of reflection being constant along each side.
  • (iii) The amount of time that the process spends at the comer of the wedge is zero (i.e., the set of times for which the process is at the comer has Lebesgue measure zero).
Hereafter, let ξ be the angle of the wedge (0 < ξ < 2π), let θ1 and θ2 be the angles of reflection on the two sides of the wedge, measured from the inward normals, the positive angles being toward the corner (-½π < θ1, θ2 ½π), and set α = (θ1 + θ2)/ξ. The question of existence and uniqueness is recast as a submartingale problem in the style used by Stroock and Varadhan (Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24, 1971, pp. 147-225), for diffusions on smooth domains with smooth boundary conditions. It is shown that no solution exists if α ≧ 2. In this case, there is a unique continuous strong Markov process satisfying (i)-(ii) above; it reaches the corner of the wedge almost surely and it remains there. If α < 2, however, then there is a unique continuous strong Markov process statisfying (i)-(iii). It is shown that starting away from the corner this process does not reach the corner of the wedge if α ≦ 0, and does reach the corner if 0 < α < 2. The general theory of multi-dimensional diffusions does not apply to the above problem because in general the boundary of the state space is not smooth and there is a discontinuity in the direction of reflection at the corner. For some values of α, the process arises from diffusion approximations to storage systems and queueing networks. (i) The state space is an infinite two-dimensional wedge, and the process behaves in the interior of the wedge like an ordinary Brownian motion. (ii) The process reflects instantaneously at the boundary of the wedge, and the angle of reflection being constant along each side. (iii) The amount of time that the process spends at the corner of the wedge is zero (i.e., the set of times for which the process is at the corner has Lebesgue measure zero).  相似文献   
14.
We explore the behavior under scaling limits of large systems using methods from the theory large deviations. This is carried out through the examination of a few examples.  相似文献   
15.
We consider a family {u? (t, x, ω)}, ? < 0, of solutions to the equation ?u?/?t + ?Δu?/2 + H (t/?, x/?, ?u?, ω) = 0 with the terminal data u?(T, x, ω) = U(x). Assuming that the dependence of the Hamiltonian H(t, x, p, ω) on time and space is realized through shifts in a stationary ergodic random medium, and that H is convex in p and satisfies certain growth and regularity conditions, we show the almost sure locally uniform convergence, in time and space, of u?(t, x, ω) as ? → 0 to the solution u(t, x) of a deterministic averaged equation ?u/?t + H?(?u) = 0, u(T, x) = U(x). The “effective” Hamiltonian H? is given by a variational formula. © 2007 Wiley Periodicals, Inc.  相似文献   
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号