首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   623篇
  免费   24篇
  国内免费   10篇
化学   485篇
晶体学   2篇
力学   11篇
数学   91篇
物理学   68篇
  2023年   6篇
  2021年   5篇
  2020年   11篇
  2019年   12篇
  2018年   10篇
  2017年   8篇
  2016年   28篇
  2015年   16篇
  2014年   16篇
  2013年   18篇
  2012年   35篇
  2011年   54篇
  2010年   29篇
  2009年   25篇
  2008年   41篇
  2007年   40篇
  2006年   43篇
  2005年   36篇
  2004年   34篇
  2003年   30篇
  2002年   18篇
  2001年   5篇
  2000年   5篇
  1999年   6篇
  1998年   8篇
  1997年   6篇
  1996年   9篇
  1995年   7篇
  1994年   11篇
  1993年   3篇
  1992年   4篇
  1990年   5篇
  1984年   2篇
  1981年   2篇
  1967年   2篇
  1917年   2篇
  1915年   2篇
  1904年   2篇
  1903年   2篇
  1901年   2篇
  1896年   2篇
  1886年   3篇
  1884年   2篇
  1880年   4篇
  1879年   4篇
  1878年   4篇
  1877年   5篇
  1876年   7篇
  1874年   4篇
  1865年   2篇
排序方式: 共有657条查询结果,搜索用时 46 毫秒
71.
The fouling behavior of microstructured hollow fibers was investigated in constant flux filtrations of colloidal silica and sodium alginate. It was observed that the fouling resistance increases faster with structured fibers than with round fibers. Reversibility of structured fibers' fouling was similar during silica filtrations and better in sodium alginate filtrations when compared with round fibers. The deposition of two different silica sols on the membranes was observed by NMR imaging. The sols had different particle size and solution ionic strength and showed different deposition behaviors. For the smaller particle-sized sol in deionized solution (Ludox-TMA), there was more deposition within the grooves of the structured fibers and much less on the fins. For the alkali-stabilized sol Bindzil 9950, which had larger particles, the deposition was homogeneous across the surface of the structured fiber, and the thickness of the deposit was similar to that on the round fiber. This difference between the deposition behavior of the two sols is explained by differences in the back diffusion, which creates concentration polarization layers with different resistances. The Ludox sol formed a thick polarization layer with very low resistance. The Bindzil sol formed a slightly thinner polarization layer; however, its resistance was much higher, of similar magnitude as the intrinsic membrane resistance. This high resistance of the polarization layer during the Bindzil sol filtration is considered to lead to quick flow regulation toward equalizing the resistance along the fiber surface. The Ludox particles were trapped at the bottom of the grooves as a result of reduced back diffusion. The fouling behavior in sodium alginate filtrations was explained by considering the size-dependent deposition within the broad alginate size distribution. The better reversibility of fouling in the structured fibers is thought to be the result of a looser deposit within the grooves, which is more easily removed than a compressed deposit on the round fibers.  相似文献   
72.
73.
We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm2. Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively.  相似文献   
74.
A high content molecular fragmentation for the analysis of phosphatidylcholines (PC) was achieved utilizing a two-stage [trap (first generation fragmentation) and transfer (second generation fragmentation)] collision-induced dissociation (CID) in combination with travelling-wave ion mobility spectrometry (TWIMS). The novel aspects of this work reside in the fact that a TWIMS arrangement was used to obtain a high level structural information including location of fatty acyl substituents and double bonds for PCs in plasma, and the presence of alkali metal adduct ions such as [M?+?Li]+ was not required to obtain double bond positions. Elemental compositions for fragment ions were confirmed by accurate mass measurements. A very specific first generation fragment ion m/z 577 (M-phosphoryl choline) from the PC [16:0/18:1 (9Z)] was produced, which by further CID generated acylium ions containing either the fatty acyl 16:0 (C15H31CO+, m/z 239) or 18:1 (9Z) (C17H33CO+, m/z 265) substituent. Subsequent water loss from these acylium ions was key in producing hydrocarbon fragment ions mainly from the α-proximal position of the carbonyl group such as the hydrocarbon ion m/z 67 (+H2C-HC?=?CH-CH?=?CH2). Formation of these ions was of important significance for determining double bonds in the fatty acyl chains. In addition to this, and with the aid of 13C labeled lyso-phosphatidylcholine (LPC) 18:1 (9Z) in the ω-position (methyl) TAP fragmentation produced the ion at m/z 57. And was proven to be derived from the α-proximal (carboxylate) or distant ω-position (methyl) in the LPC.  相似文献   
75.
Explicit multi-stage solvers are routinely used to solve the semi-discretized equations that arise in Computational Fluid Dynamics (CFD) problems. Often they are used in combination with multi-grid methods. In that case, the role of the multi-stage solver is to efficiently reduce the high frequency modes on the current grid and is called a smoother. In the past, when optimizing the coefficients of the scheme, only the damping characteristics of the smoother were taken into account and the interaction with the remainder of the multi-grid cycle was neglected. Recently it had been found that coefficients that result in less damping, but allow for a higher Courant-Friedrichs-Lewy (CFL) number are often superior to schemes that try to optimize damping alone. While this is certainly true for multi-stage schemes used as a stand-alone solver, we investigate in this paper if using higher CFL numbers also yields better results in a multi-grid setting. We compare the results with a previous study we conducted and where a more accurate model of the multi-grid cycle was used to optimize the various parameters of the solver.We show that the use of the more accurate model results in better coefficients and that in a multi-grid setting propagation is of little importance.We also look into the gains to be made when we allow the parameters to be different for the pre- and post-smoother and show that even better coefficients can be found in this way.  相似文献   
76.
After controlled pretreatment, some Zr-terephthalate metal-organic frameworks are highly selective catalysts for the cross-aldol condensation between benzaldehyde and heptanal. The proximity of Lewis acid and base sites in the amino-functionalized UiO-66(NH(2)) material further raises the reaction yields.  相似文献   
77.
Double metal cyanides (DMCs) are highly active recyclable heterogeneous catalysts for hydroamination of phenylacetylene with 4-isopropylaniline. The best hydroamination yields are obtained with Zn-Co DMCs, especially if the particle size is decreased by a reverse emulsion synthesis technique.  相似文献   
78.
The bulk structure of the two oldest ionic liquids (ILs), ethylammonium nitrate (EAN) and ethanolammonium nitrate (EtAN), is elucidated using neutron diffraction. The spectra were modelled using empirical potential structure refinement (EPSR). The results demonstrate that EAN exhibits a long-range structure of solvophobic origin, similar to a bicontinuous microemulsion or disordered L(3)-sponge phase, but with a domain size of only 1 nm. The alcohol (-OH) moiety in EtAN interferes with solvophobic association between cation alkyl chains resulting in small clusters of ions, rather than an extended network.  相似文献   
79.
The structure and dynamics of the interfacial layers between the extremely pure air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and Au(111) has been investigated using in situ scanning tunneling microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy measurements. The in situ scanning tunnelling microscopy measurements reveal that the Au(111) surface undergoes a reconstruction, and at -1.2 V versus Pt quasi-reference the famous (22 × √3) herringbone superstructure is probed. Atomic force microscopy measurements show that multiple ion pair layers are present at the ionic liquid/Au interface which are dependent on the electrode potential. Upon applying cathodic electrode potentials, stronger ionic liquid near surface structure is detected: both the number of near surface layers and the force required to rupture these layers increases. The electrochemical impedance spectroscopy results reveal that three distinct processes take place at the interface. The fastest process is capacitive in its low-frequency limit and is identified with electrochemical double layer formation. The differential electrochemical double layer capacitance exhibits a local maximum at -0.2 V versus Pt quasi-reference, which is most likely caused by changes in the orientation of cations in the innermost layer. In the potential range between -0.84 V and -1.04 V, a second capacitive process is observed which is slower than electrochemical double layer formation. This process seems to be related to the herringbone reconstruction. In the frequency range below 1 Hz, the onset of an ultraslow faradaic process is found. This process becomes faster when the electrode potential is shifted to more negative potentials.  相似文献   
80.
The theory of what happens to a superfluid in a random field, known as the “dirty boson” problem, directly relates to a real experimental system presently under study by several groups, namely excitons in coupled semiconductor quantum wells. We consider the case of bosons in two dimensions in a random field, when the random field can be large compared to the repulsive exciton–exciton interaction energy, but is small compared to the exciton binding energy. The interaction between excitons is taken into account in the ladder approximation. The coherent potential approximation (CPA) allows us to derive the exciton Green's function for a wide range of the random field strength, and in the weak-scattering limit CPA results in the second-order Born approximation. For quasi-two-dimensional excitonic systems, the density of the superfluid component and the Kosterlitz–Thouless temperature of the superfluid phase transition are obtained, and are found to decrease as the random field increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号