首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14841篇
  免费   629篇
  国内免费   42篇
化学   10078篇
晶体学   230篇
力学   486篇
综合类   1篇
数学   1140篇
物理学   3577篇
  2024年   48篇
  2023年   166篇
  2022年   326篇
  2021年   429篇
  2020年   469篇
  2019年   532篇
  2018年   497篇
  2017年   475篇
  2016年   680篇
  2015年   480篇
  2014年   772篇
  2013年   1289篇
  2012年   1133篇
  2011年   1167篇
  2010年   776篇
  2009年   596篇
  2008年   739篇
  2007年   743篇
  2006年   569篇
  2005年   506篇
  2004年   389篇
  2003年   322篇
  2002年   256篇
  2001年   160篇
  2000年   135篇
  1999年   100篇
  1998年   71篇
  1997年   101篇
  1996年   99篇
  1995年   75篇
  1994年   73篇
  1993年   95篇
  1992年   98篇
  1991年   80篇
  1990年   68篇
  1989年   74篇
  1988年   52篇
  1987年   49篇
  1986年   43篇
  1985年   67篇
  1984年   66篇
  1983年   56篇
  1982年   47篇
  1981年   41篇
  1980年   46篇
  1979年   63篇
  1978年   56篇
  1977年   56篇
  1976年   47篇
  1975年   35篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
891.
Photosystem I (PSI) is one of the most studied electron transfer (ET) systems in nature; it is found in plants, algae, and bacteria. The effect of the system structure and its electronic properties on the electron transfer rate and yield was investigated for years in details. In this work we show that not only those system properties affect the ET efficiency, but also the electrons’ spin. Using a newly developed spintronic device and a technique which enables control over the orientation of the PSI monolayer relative to the device (silver) surface, it was possible to evaluate the degree and direction of the spin polarization in ET in PSI. We find high‐spin selectivity throughout the entire ET path and establish that the spins of the electrons being transferred are aligned parallel to their momenta. The spin selectivity peaks at 300 K and vanishes at temperatures below about 150 K. A mechanism is suggested in which the chiral structure of the protein complex plays an important role in determining the high‐spin selectivity and its temperature dependence. Our observation of high light induced spin dependent ET in PSI introduces the possibility that spin may play an important role in ET in biology.  相似文献   
892.
Flexible and dynamic porous coordination polymers (PCPs) with well‐defined nanospaces composed of chromophoric organic linkers provide a scaffold for encapsulation of versatile guest molecules through noncovalent interactions. PCPs thus provide a potential platform for molecular recognition. Herein, we report a flexible 3D supramolecular framework {[Zn(ndc)(o‐phen)]?DMF}n (o‐phen=1,10‐phenanthroline, ndc=2,6‐napthalenedicarboxylate) with confined nanospaces that can accommodate different electron‐donating aromatic amine guests with selective turn‐on emission signaling. This system serves as a molecular recognition platform through an emission‐readout process. Such unprecedented tunable emission with different amines is attributed to its emissive charge‐transfer (CT) complexation with o‐phen linkers. In certain cases this CT emission is further amplified by energy transfer from the chromophoric linker unit ndc, as evidenced by single‐crystal X‐ray structural characterization.  相似文献   
893.
The efficient collection of solar energy relies on the design and construction of well‐organized light‐harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.  相似文献   
894.
Structurally thermostable mesoporous anatase TiO2 (m‐TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores‐directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high‐angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X‐ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high‐temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye‐sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m‐TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25–m‐TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56 %) in the P25–m‐TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60 %) of the device, compared to DSSCs with a monolayer of P25 as the electrode.  相似文献   
895.
Introduction of defects and nitrogen doping are two of the most pursued methods to tailor the properties of graphene for better suitability to applications such as catalysis and energy conversion. Doping nitrogen atoms at defect sites of graphene and codoping them along with boron atoms can further increase the efficiency of such systems due to better stability of nitrogen at defect sites and stabilization provided by B?N bonding. Systematic exploration of the possible doping/codoping configurations reflecting defect regions of graphene presents a prevalent doping site for nitrogen‐rich BN clusters and they are also highly suitable for modulating (0.2–0.9 eV) the band gap of defect graphene. Such codoped systems perform significantly better than the platinum surface, undoped defect graphene, and the single nitrogen or boron atom doped defect graphene system for dioxygen adsorption. Significant stretching of the O?O bond indicates a lowering of the bond breakage barrier, which is advantageous for applications in the oxygen reduction reaction.  相似文献   
896.
Rate constants and derived activation parameters of organic reactions in aqueous media, in particular Diels–Alder reactions, are sensitive to the presence of cosolvents in water. To enhance the solubility window of water, we introduced ionic liquids as cosolvents in the aqueous Diels–Alder reaction between anthracene‐9‐carbinol and N‐ethylmaleimide. The reactive potentials of the organic compounds are parameterized by using semi‐empirical quantum chemical methods. The principle of Savage–Wood additivity of group interactions is used to quantify the pairwise group interactions among chemically inert ionic liquids and organic reactants, both at initial and transition states of the reaction. The present approach shows promise, as the use of simple calculations from easily available kinetic data can help researchers to understand the versatility of green ionic‐liquid alternatives to volatile organic solvents.  相似文献   
897.
Phytic acid is the major storage form of organic phosphorus in nature- and plant-based animal feed. It forms insoluble complexes with nutritionally important metals and proteins that are unavailable for monogastric or agastric animals. Phytases initiate the stepwise hydrolysis of phytic acid and release inorganic orthophosphate. In the present investigation, the phytase gene from a phytase producing Bacillus licheniformis strain PB-13 was successfully expressed in Escherichia coli BL21. Recombinant phytase ‘rPhyPB13’ was found to be catalytically active, with an activity of 0.97 U/mL and specific activity of 0.77 U/mg. The rPhyPB13 was purified to 14.10-fold using affinity chromatography. Similar to other β-propeller phytases, purified rPhyPB13 exhibited maximal activity at pH 6.0–6.5 and 60 °C in the presence of 1 mM Ca2+ and was highly active over a wider pH range (pH 4.0–8.0) and high temperature (80 °C). It has shown maximum activity towards Na-phytate as substrate. The observed K m , V max and k cat of purified rPhyPB13 were 1.064 mM, 1.32 μmol/min/mg and 27.46 s?1, respectively. PhyPB13 was resistant to trypsin inactivation, activated in presence of Ca2+ and inhibited in presence of EDTA. Crude rPhyPB13 has good digestion efficiency for commercial feed and soybean meal. These results indicate that PhyPB13 is a β-propeller phytase that has application potential in aquaculture feed.  相似文献   
898.
The objective of present investigation was to study the effect of gut microbiota alteration by oral administration of targeted delivery of pH sensitive cefdinir microspheres to high-fructose-fed (HFD) rats. Rats were fed with a high-fructose diet with or without cefdinir microsphere administration for 30 days. The fecal microbiota community, oral glucose tolerance, the markers of liver injury, plasma and hepatic lipids profile, and histological evaluation were investigated. The levels of blood glucose, liver injury markers, lipid profile in plasma and liver, and fat tissue were significantly increased in high-fructose-fed rats. However, after pH-sensitive cefdinir microsphere administration, the elevation of these parameters was significantly suppressed. Cef EL significantly lowered the increased AST (p?<?0.05) and ALT (p?<?0.001) levels in HFD group. There is a significant lower (p?<?0.01) AUCglucose level in Cef EL group than HFD group The histological changes in the liver and the small and large intestines were more profound in HFD group as compared to cefdinir-treated HFD and control groups. Feeding of cefdinir microsphere sustained lactobacilli and bifidobacteria and significantly decreased (p?<?0.05) the number of Enterobacteriaceae induced by HFD. Experimental evidences demonstrated that the effectiveness of pH-specific cefdinir microsphere on reducing insulin resistance and development of metabolic changes in high-fructose-fed rats and suggested that it may be a promising therapeutic agent in treating type 2 diabetes. Intestinal-targeted antibiotic delivery needs to be further explored for its therapeutic applications.  相似文献   
899.
Hydroxylase/acetyltransferase elicitors and cyclooxygenase inhibitor along with various precursors from primary shikimate and secoiridoid pools have been fortified to vincamine less hairy root clone of Vinca minor to determine the regulatory factors associated with vincamine biosynthesis. Growth kinetic studies revealed that acetyltransferase elicitor acetic anhydride and terpenoid precursor loganin significantly reduce the growth either supplemented alone or in combination (GI?=?140.6?±?18.5 to 246.7?±?24.3), while shikimate and tryptophan trigger biomass accumulation (GI?=?440.2?±?31.5 to 540.5?±?40.3). Loganin also downregulates total alkaloid biosynthesis. Maximum flux towards vincamine production (0.017?±?0.001 % dry wt.) was obtained when 20-day-old hairy roots were fortified with secologanin (10 mg/l) along with tryptophan (100 mg/l), naproxen (8.4 mg/l), hydrogen peroxide (20 μg/l), and acetic anhydride (32.4 mg/l). This was supported by RT PCR (qPCR) analysis where 2- and 3-fold increase in tryptophan decarboxylase (TDC; RQ?=?2.0?±?0.09) and strictosidine synthase (STR; RQ?=?3.3?±?0.36) activity, respectively, was recorded. The analysis of variance (ANOVA) for growth kinetics, total alkaloid content, and gene expression studies favored highly significant data (P?<?0.05–0.01). Above treated hairy roots were also up-scaled in a 5-l stirred-tank bioreactor where a 40-day cycle yielded 8-fold increase in fresh root mass.  相似文献   
900.
In this paper, we propose a new efficient method based on a combination of Adomian decomposition method (ADM) and Green’s function for solving second-order boundary value problems (BVPs) for integro-differential equations (IDEs). The proposed method depends on constructing Green’s function before establishing the recursive scheme for the solution components. Unlike the ADM or modified ADM , the proposed method avoids solving a sequence of difficult nonlinear equations (transcendental equations) for the unknown parameters. The proposed method provides a direct recursive scheme for obtaining the series solution with easily calculable components. We also provide a sufficient condition that guarantees a unique solution to the second-order BVPs for IDEs. Convergence and error analysis of the proposed method are also discussed. Convergence analysis is reliable enough to estimate the error bound of the series solution. Some numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed approach. The numerical results reveal that the proposed method is very effective and simple.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号