首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   14篇
化学   200篇
晶体学   9篇
力学   25篇
数学   30篇
物理学   65篇
  2023年   2篇
  2022年   2篇
  2021年   14篇
  2020年   9篇
  2019年   10篇
  2018年   19篇
  2017年   11篇
  2016年   16篇
  2015年   7篇
  2014年   18篇
  2013年   35篇
  2012年   24篇
  2011年   29篇
  2010年   15篇
  2009年   7篇
  2008年   14篇
  2007年   11篇
  2006年   6篇
  2005年   9篇
  2004年   9篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1980年   1篇
  1968年   1篇
排序方式: 共有329条查询结果,搜索用时 31 毫秒
61.
The identification of ignitable liquids is very important and challenging aspect in arson crime investigations. The detection of gasoline and diesel fuel components using solid phase micro-extraction prior to gas chromatography–mass spectrometry for the forensic analysis of fire debris has been carried out. Previous works show that the absorption characteristics of the substrate are one of the most important factors in determining the evaporation rate of the accelerants. In order to determine the presence of the fuel residues, four of the most common substrate materials were tested in this work; wool, cotton, silk and polyester. The obtained results indicate that both gasoline and diesel fuel accelerants persisted longer on wool and silk than on the other selected substrates. Such information illustrates the influence of fuel persistence times after extinguishing and the best materials to be scanned for ignitable liquids at the fire scene.  相似文献   
62.
The present work considers the application of oxide semiconductors in the conversion of solar energy into the chemical energy required for water purification (removal of microbial cells and toxic organic compounds from water) and the generation of solar hydrogen fuel by photoelectrochemical water splitting. The first part of this work considers the concept of solar energy conversion by oxide semiconductors and the key performance-related properties, including electronic structure, charge transport, flat band potential and surface properties, which are responsible to the reactivity and photoreactivity of oxides with water. The performance of oxide systems for solar energy conversion is briefly considered in terms of an electronic factor. The progress of research in the formation of systems with high performance is considered in terms of specific aspects of nanotechnology, leading to the formation of systems with high performance. The nanotechnology approach in the development of high-performance photocatalysts is considered in terms of the effect of surface energy associated with the formation of nanostructured system on the formation of surface structures that exhibit outstanding properties. The unresolved problems that should be tackled in better understanding of the effect of nanostructures on properties and performance of oxide semiconductors in solar energy conversion are discussed. This part is summarised by a list of unresolved problems of crucial importance in the formation of systems with enhanced performance. This work also formulates the questions that must be addressed in order to overcome the hurdles in the formation of oxide semiconductors with high performance in water purification and the generation of solar fuel. The research strategy in the development of oxide systems with high performance, including photocatalysts for solar water purification and photoelectrodes for photoelectrochemical water splitting, is considered. The considerations are focused on the systems based on titanium dioxide of different defect disorder as well as its solid solutions and composites.  相似文献   
63.
Hydrotalcite (HT) materials have been known to be able to adsorb \(\hbox {CO}_{2}\) even at high temperature. However, HT has not been made into a micro-porous membrane because of its meso-porous nature. In order to form a micro-porous HT membrane, silica was selected as a host matrix due to its ability to retain its micro-porosity. In this paper, a micro-porous hydrotalcite–silica membrane was formed on a meso-porous \(\upgamma \) -alumina layer supported by a macro-porous \(\upalpha \) -alumina substrate. Most of the micro-porosity determined from nitrogen adsorption measurement was found to be either closed or open but not interconnected, whereas most of the meso-porosity (at ca. 11.2 nm) in the micro-porous membrane was open and interconnected, thereby promoting gas flow. Viscous flow mechanism was observed to dominate transport of gases in macro-porous membrane. Knudsen diffusion dominated transport of gases in meso-porous membrane. On the other hand, surface affinity influenced the transport of carbon dioxide through the micro-porous membrane rather significantly. While permeability of pure hydrogen and carbon dioxide were independent of pressure, the permeability of the gases in the binary mixtures decreased with increasing pressure. Both experiment and simulation demonstrated consistent results.  相似文献   
64.
The leaves of Cinnamomum iners (Reinw. ex Blume-Lauraceae) have been refluxed successively with chloroform and alcohol to get chloroform extract and alcoholic extract. Both the extracts have been assayed for cytotoxicity against human colorectal tumour cells. The chloroform extract exhibited significant cytotoxicity with IC(50) 31?μg mL(-1) (p??200?μg mL(-1). The chloroform extract has been further proceeded for chemical analysis by GC-TOFMS and 178 components were identified including acids, amines, amides, aldehydes, alcohols, esters, benzene derivatives, bicyclic compounds, terpenes, hydrocarbons, naphthalene derivatives, furan derivatives, azulenes, etc. Nine components representing 51.73% of the total chloroform extract were detected as major components. Caryophyllene (14.41%) and Eicosanoic acid ethyl ester (12.17%) are the most prominent components of the chloroform extract. β-Caryophyllene (14.41%) as most abundant compound supports potent cytotoxicity as shown by chloroform extract.  相似文献   
65.
The influence of the structure properties relationships of silicone incorporated polyimide (PI) on thermal stability was investigated by using single scan thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) in nitrogen. Four systems have been synthesized based on monomer 4-(4-(1-(4-(4-aminophenoxy) phenyl)-1-methylethyl) phenoxy) aniline (BAPP)/3,3??,4,4??-Biphenyltetracarboxylic dianhydride including parent PI (S-1), PI siloxane copolymer (S-2 and S-3), and PI siloxane hybrid (S-4). The derivative thermogravimetric analysis (DTG) and DSC curves indicate a double and single stage decomposition process and glass transition temperature (T g), respectively. While the PI, PIS, and PSH showed distinctive features towards thermal analysis, it was found that the rate of degradation (???/??t) was influenced by the flexibility of Si?CO?CSi in the backbone and in Si?CO?CSi itself. These results revealed that the presence of Si?CO?CSi in either the backbone or matrix indicates its stability with regard to high thermal service applications.  相似文献   
66.
JPC – Journal of Planar Chromatography – Modern TLC - The chromatographic separation of three metal cations was performed on high-performance thin-layer plates (silica gel 60F254) with...  相似文献   
67.
The three‐coordinate Ag atom in the title compound, [Ag(C7H3N2O6)(C18H15P)2], shows trigonal–planar coordination [P—Ag—P = 147.1 (1)° and ΣAg = 359.0 (3)°]. Adjacent mol­ecules are linked through the O atoms of adjacent nitro groups [Ag?O = 3.205 (3) and 3.302 (4) Å] into a zigzag chain running parallel to the c axis.  相似文献   
68.
69.
Tri-O-methylcellulose was prepared from partially O-methylated cellulose and its chemical shifts (1H and 13C), and proton coupling constants were assigned using the following NMR methods: (1) One-dimensional 1H and 13C spectra of the title compound were used to assign functional groups and to compare with literature data; (2) double quantum filtered proton–proton correlation spectroscopy (1H, 1H DQF-COSY) was used to assign the chemical shifts of the network of 7 protons in the anhydroglucose portion of the repeat unit; (3) the heteronuclear single-quantum coherence (HSQC) spectrum was used to establish connectivities between the bonded protons and carbons; (4) the heteronuclear multiple-bond correlation (HMBC) spectrum was used to connect the hydrogens of the methyl ethers to their respective sugar carbons; (5) the combination of HSQC and HMBC spectra was used to assign the 13C shifts of the methyl ethers; (6) all spectra were used in combination to verify the assigned chemical shifts; (7) first-order proton coupling constants data (JH,H in Hz) were obtained from the resolution-enhanced proton spectra. The NMR spectra of tri-O-methylcellulose and other cellulose ethers do not resemble the spectra of similarly substituted cellobioses. Although the 1H and 13C shifts and coupling constants of 2,3,6-tri-O-methylcellulose closely resemble those of methyl tetra-O-methyl-β-D -glucoside, there are differences with regard to the chemical shifts and the order of appearances of the resonating nuclei of the methyl ether appendages and the proton at position 4 in the pyranose ring. H4 in tri-O-methylcellulose is deshielded by the acetal system comprising the β-1→4 linkage, and it resonates downfield. H4 in the permethylated glucoside is not as deshielded by the equitorial O-methyl group at C4, and it resonates upfield. The order of appearance of the 1H and 13C resonances in the spectra of the tri-O-methylcellulose repeat unit (from upfield to downfield) are H2 < H3 < H5 < H6a < H3a < H2a < pro R H6B < H4 < pro S H6A ≪ H1 and C6a < C3a < C2a < C6 < C5 < C4 < C2 < C3 ≪ C1, respectively. Close examination of the pyranose ring coupling constants of the repeat unit in tri-O-methylcellulose supports the 4C1 arrangement of the glucopyranose ring. Examination of the proton coupling constants about the C5-C6 bond (J5,6A and J5,6B) in the nuclear Overhauser effect difference spectra revealed that the C6 O-methyl group is predominantly in the gauche gauche conformation about the C5-C6 bond for the polymer in solution. © 1999 John Wiley & Sons, Inc.* J Polym Sci A: Polym Chem 37: 4019–4032, 1999  相似文献   
70.
Glioblastoma is an aggressive cancer, against which medical professionals are still quite helpless, due to its resistance to current treatments. Scorpion toxins have been proposed as a promising alternative for the development of effective targeted glioblastoma therapy and diagnostic. However, the exploitation of the long peptides could present disadvantages. In this work, we identified and synthetized AaTs-1, the first tetrapeptide from Androctonus australis scorpion venom (Aa), which exhibited an antiproliferative effect specifically against human glioblastoma cells. Both the native and synthetic AaTs-1 were endowed with the same inhibiting effect on the proliferation of U87 cells with an IC50 of 0.56 mM. Interestingly, AaTs-1 was about two times more active than the anti-glioblastoma conventional chemotherapeutic drug, temozolomide (TMZ), and enhanced its efficacy on U87 cells. AaTs-1 showed a significant similarity with the synthetic peptide WKYMVm, an agonist of a G-coupled formyl-peptide receptor, FPRL-1, known to be involved in the proliferation of glioma cells. Interestingly, the tetrapeptide triggered the dephosphorylation of ERK, p38, and JNK kinases. It also enhanced the expression of p53 and FPRL-1, likely leading to the inhibition of the store operated calcium entry. Overall, our work uncovered AaTs-1 as a first natural potential FPRL-1 antagonist, which could be proposed as a promising target to develop new generation of innovative molecules used alone or in combination with TMZ to improve glioblastoma treatment response. Its chemical synthesis in non-limiting quantity represents a valuable advantage to design and develop low-cost active analogues to treat glioblastoma cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号