首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
化学   19篇
数学   4篇
物理学   16篇
  2020年   1篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
排序方式: 共有39条查询结果,搜索用时 578 毫秒
21.
We investigate adsorption of a Lennard-Jones fluid in slit-like pores with energetically heterogeneous walls by using Grand Canonical Monte Carlo simulations and a density functional approach. The model of a fluid-wall potential is qualitatively similar to that invoked by R?cken et al. (J. Chem. Phys. 108, 8089, (1999); i.e., it consists of a homogeneous part that varies in the direction perpendicular to the wall and a periodic part, varying also in one direction parallel to the wall, but in contrast to the above mentioned work, both parts of the fluid-wall potential are modeled by Lennard-Jones (9, 3) type functions. The structure of the adsorbed film is characterized by local densities. We evaluate the phase diagrams for several systems characterized by different corrugation of the adsorbing potential and discuss the discrepancies between theoretical predictions and computer simulations. Copyright 2001 Academic Press.  相似文献   
22.
Eradication of HIV reservoirs in the brain necessitates penetration of antiviral agents across the blood-brain barrier (BBB), a process limited by drug efflux proteins such as P-glycoprotein (P-gp) at the membrane of brain capillary endothelial cells. We present an innovative chemical strategy toward the goal of therapeutic brain penetration of the P-gp substrate and antiviral agent abacavir, in conjunction with a traceless tether. Dimeric prodrugs of abacavir were designed to have two functions: inhibit P-gp efflux at the BBB and revert to monomeric therapeutic within cellular reducing environments. The prodrug dimers are potent P-gp inhibitors in cell culture and in a brain capillary model of the BBB. Significantly, these agents demonstrate anti-HIV activity in two T-cell-based HIV assays, a result that is linked to cellular reversion of the prodrug to abacavir. This strategy represents a platform technology that may be applied to other therapies with limited brain penetration due to P-glycoprotein.  相似文献   
23.
The morphology of silver particles deposited on ITO-glass surface by pulse electrolysis in acetonitrile solutions of AgNO3 has been analyzed. The influences of potential value (E) as well pulse duration (τon) and pause (τoff) on the size and geometry of the particles has been discussed. It has been shown that in the range of 0.0 ≤ E ≤ ?1.5 V at τon = 6 ms and 90 ≤ τoff ≤ 490 ms formation of silver particles (~20–50 nm) and their agglomeration (~0.2–2 µm) take place. The tendency to increase size of the particles in 3D has been observed with the increase of cathode potential. Decreasing of duty cycle leads to more discrete deposited particles.   相似文献   
24.
SERS active surfaces were prepared by depositing silver films using Tollen's reaction on to barium titanate beads. The SERS activity of the resulting surfaces was probed using two thiols (benzene thiol and 1,2-benzene dithiol) and rhodamine 6G. The intensity of the SERS signal for the three analytes was investigated as a function of silver deposition time. The results indicate that the SERS intensity increased with increasing thickness of the silver film until a maximum signal intensity was achieved; additional silver deposition resulted in a decrease in the SERS intensity for all of the studied molecules. SEM measurement of the Ag coated barium titanate beads, as a function of silver deposition time, indicate that maximum SERS intensity corresponded with the formation of atomic scale islands of silver nanoparticles. Complete silver coverage of the beads resulted in a decreased SERS signal and the most intense SERS signals were observed at deposition times of 30 min for the thiols and 20 min for rhodamine 6G.  相似文献   
25.
In this paper, we investigate dynamics of the modified loop quantum cosmology models using dynamical systems methods. Modifications considered come from the choice of the different field strength operator and result in different forms of the effective Hamiltonian. Such an ambiguity of the choice of this expression from some class of functions is allowed in the framework of loop quantization. Our main goal is to show how such modifications can influence the bouncing universe scenario in the loop quantum cosmology. In effective models considered we classify all evolutional paths for all admissible initial conditions. The dynamics is reduced to the form of a dynamical system of the Newtonian type on a two-dimensional phase plane. These models are equivalent dynamically to the FRW models with the decaying effective cosmological term parameterized by the canonical variable p (or by the scale factor a). We demonstrate that the evolutional scenario depends on the geometrical constant parameter Λ as well as the model parameter n. We find that for the positive cosmological constant there is a class of oscillating models without the initial and final singularities. The new phenomenon is the appearance of curvature singularities for the finite values of the scale factor, but we find that for the positive cosmological constant these singularities can be avoided. The values of the parameter n and the cosmological constant differentiate asymptotic states of the evolution. For the positive cosmological constant the evolution begins at the asymptotic state in the past represented by the de Sitter contracting (deS) spacetime or the static Einstein universe H = 0 or H =  − ∞ state and reaches the de Sitter expanding state (deS+), the state H = 0 or H =  + ∞ state. In the case of the negative cosmological constant we obtain the past and future asymptotic states as the Einstein static universes.  相似文献   
26.
We have studied the microscopic structure and thermodynamic properties of a core-softened fluid model in disordered matrices of Lennard-Jones particles by using grand canonical Monte Carlo simulation. The dependence of density on the applied chemical potential (adsorption isotherms), pair distribution functions, as well as the heat capacity in different matrices are discussed. The microscopic structure of the model in matrices changes with density similar to the bulk model. Thus one should expect that the structural anomaly persists at least in dilute matrices. The region of densities for the heat capacity anomaly shrinks with increasing matrix density. This behavior is also observed for the diffusion coefficient on density from independent molecular dynamics simulation. Theoretical results for the model have been obtained by using replica Ornstein-Zernike integral equations with hypernetted chain closure. Predictions of the theory generally are in good agreement with simulation data, except for the heat capacity on fluid density. However, possible anomalies of thermodynamic properties for the model in disordered matrices are not captured adequately by the present theory. It seems necessary to develop and apply more elaborated, thermodynamically self-consistent closures to capture these features.  相似文献   
27.
In this work we present results for the structure of aerogels coming from the diffusion-limited cluster aggregation simulation method. Pair distribution functions and structure factors, resulting from simulation, were considered as experimental input for reverse Monte Carlo modeling. The modeling yielded structural models with pair distribution functions and structure factors nearly identical to the results of the simulations. Particle configurations from both the simulations and reverse Monte Carlo modeling have been analyzed in terms of the distribution of the number of neighbors. It is suggested that the reverse Monte Carlo method, when applied to the structure factor, may be a suitable technique for the interpretation of experimental scattering data on colloidal aerogels.  相似文献   
28.
In this work, the effective interaction between hard sphere colloidal particles in the presence of a hard sphere solvent, both dispersed either in a disordered quenched matrix of hard spheres or in the random matrix of freely overlapping obstacles is analyzed, using the replica Ornstein-Zernike (ROZ) integral equations. The ROZ equations are supplemented by the hypernetted chain closure. The presence of either disordered or random matrix is manifested in the attractive minima of the colloid-colloid potential of mean force (PMF), in addition to a set of minima due to the presence of solvent species. The effects of matrix microporosity and solvent density on the PMF and the intercolloidal forces are investigated. This project has been supported in part by the National Council for Science and Technology of Mexico (CONACyT) under Grant 25301-E.  相似文献   
29.
A dimerizing fluid of hard discs is studied using two-dimensional (2D) Wertheim’s Ornstein-Zernike (WOZ) equation and associative Percus-Yevick (APY) closure. Dimerization takes place due to site-site associative interactions. The dependences of the association constant on disc density at different association energies are obtained. We calculate the compressibility and the virial equations of state (EOS) using the solution of the WOZ equation. Theoretical structure and thermodynamics is compared with Monte Carlo computer simulation data. Extension of our solution for polymerizing models is of special interest for the development of EOS for 2D chain fluids. This work was supported in part by Cray Research of Mexico under University Research and Development grant program and by KBN of Poland under the Grant No. 3T09A06210.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号