首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   758篇
  免费   43篇
  国内免费   3篇
化学   506篇
晶体学   6篇
力学   38篇
数学   62篇
物理学   192篇
  2024年   6篇
  2023年   3篇
  2022年   13篇
  2021年   32篇
  2020年   23篇
  2019年   15篇
  2018年   26篇
  2017年   24篇
  2016年   39篇
  2015年   45篇
  2014年   42篇
  2013年   57篇
  2012年   52篇
  2011年   54篇
  2010年   35篇
  2009年   34篇
  2008年   31篇
  2007年   30篇
  2006年   19篇
  2005年   17篇
  2004年   15篇
  2003年   23篇
  2002年   12篇
  2001年   13篇
  2000年   15篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   12篇
  1992年   5篇
  1991年   8篇
  1990年   9篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1983年   3篇
  1982年   6篇
  1979年   4篇
  1978年   1篇
  1977年   3篇
  1976年   4篇
  1975年   5篇
  1974年   2篇
  1973年   3篇
  1970年   2篇
  1969年   2篇
排序方式: 共有804条查询结果,搜索用时 359 毫秒
131.
6-Thienyllumazine (TLM) is synthesized as a new fluorescent sensor that is capable of indicating selectively the presence of Cd(2+) ion via a fluorescence signal. Experiment has been performed in the presence of Ni(2+), Co(2+), Cu(2+), Ag(+), Mn(2+), Hg(2+), Zn(2+), Pb(2+), and Mg(2+) metal ions in aqueous solutions. The product was characterized by elemental analysis, mass, and NMR spectra. The spectral characteristics (maxima, quantum yields, Stokes shift, and lifetimes) of TLM in organic and aqueous solvents have been studied with the help of absorption and fluorescence spectroscopy, as well as, using time dependent spectrofluorimetry (single photon counting technique). The fluorescence dependence of TLM on the pH has also been investigated. The experimental results indicate that TLM exists in two ionic forms: neutral (acid) and anion (base). Electronic structure calculations of TLM were carried out using Semiempirical Austin Model 1 (AM1) and ab initio Hartree-Fock (HF) with 6-31G* basis set and using Gaussian 03 program. Absorption energies for TLM have been calculated using ZINDO method. The theoretical results confirm the presence of the thiophene and pteridine rings in two conformations: twisted at angle of about 35 degrees in the excited state and coplanar in the ground state.  相似文献   
132.
133.
Spectroscopic and electronic structure studies of the class I Escherichia coli ribonucleotide reductase (RNR) intermediate X and three computationally derived model complexes are presented, compared, and evaluated to determine the electronic and geometric structure of the FeIII-FeIV active site of intermediate X. Rapid freeze-quench (RFQ) EPR, absorption, and MCD were used to trap intermediate X in R2 wild-type (WT) and two variants, W48A and Y122F/Y356F. RFQ-EPR spin quantitation was used to determine the relative contributions of intermediate X and radicals present, while RFQ-MCD was used to specifically probe the FeIII/FeIV active site, which displayed three FeIV d-d transitions between 16,700 and 22,600 cm(-1), two FeIV d-d spin-flip transitions between 23,500 and 24,300 cm(-1), and five oxo to FeIV and FeIII charge transfer (CT) transitions between 25,000 and 32,000 cm(-1). The FeIV d-d transitions were perturbed in the two variants, confirming that all three d-d transitions derive from the d-pi manifold. Furthermore, the FeIV d-pi splittings in the WT are too large to correlate with a bis-mu-oxo structure. The assignment of the FeIV d-d transitions in WT intermediate X best correlates with a bridged mu-oxo/mu-hydroxo [FeIII(mu-O)(mu-OH)FeIV] structure. The mu-oxo/mu-hydroxo core structure provides an important sigma/pi superexchange pathway, which is not present in the bis-mu-oxo structure, to promote facile electron transfer from Y122 to the remote FeIV through the bent oxo bridge, thereby generating the tyrosyl radical for catalysis.  相似文献   
134.
2‐Acetyl‐1‐methyl‐1H‐benzimidazole reacts with dimethylformamide‐dimethyl‐acetal (DMF‐DMA) to afford the corresponding E‐1‐(1‐methyl‐1H‐benzimidazol‐2‐yl)‐3‐N,N‐dimethylaminoprop‐2‐enone. The latter compound reacts regioselectively with some nitrilimines and nitrile oxides to afford the corresponding pyrazole and isoxazole derivatives, respectively. These reaction products react with hydrazine hydrate to give the novel pyrazolo[3,4‐d]pyridazine and isoxazolo[3,4‐d]pyridazine derivatives, respectively.  相似文献   
135.
This study analyzes the effects of some important factors of champagne technology on the ellipticity and Brewster angle microscopy (BAM) of the air/champagne interface in view of using the optical properties of the adsorption layer of base wine to forecast the stability of the champagne bubble collar. Using standard, ultrafiltered, and ultraconcentrated wines it was observed that champagne can lose amphiphilic macromolecules which adsorb on the inner glass wall of the bottle during storage, particles such as dead yeasts can adhere to the adsorption layer, a weak increase of the ethanol content during bottle fermentation can reduce significantly the ellipticity of the adsorption layer, and CO2 has no significant effect on the properties of that layer. Surprisingly, no visible differences of the adsorption layer were noticed between the experimental champagnes of the 2004 vintage of three vine varieties (Chardonnay, Pinot noir, and Pinot meunier). From analysis of all samples it is proposed that the mean value and standard deviation of the ellipticity measured during 30 min after pouring the wine in a Petri dish are physical quantities which satisfactorily characterize the adsorption layer of champagne. When needed, further characterization of the adsorption layer may be obtained by a detailed analysis of the kinetics of ellipticity during the same period and inspection of the BAM images of the interface.  相似文献   
136.
The COVID-19 pandemic needs no introduction at present. Only a few treatments are available for this disease, including remdesivir and favipiravir. Accordingly, the pharmaceutical industry is striving to develop new treatments for COVID-19. Molnupiravir, an orally active RdRp inhibitor, is in a phase 3 clinical trial against COVID-19. The objective of this review article is to enlighten the researchers working on COVID-19 about the discovery, recent developments, and patents related to molnupiravir. Molnupiravir was originally developed for the treatment of influenza at Emory University, USA. However, this drug has also demonstrated activity against a variety of viruses, including SARS-CoV-2. Now it is being jointly developed by Emory University, Ridgeback Biotherapeutics, and Merck to treat COVID-19. The published clinical data indicate a good safety profile, tolerability, and oral bioavailability of molnupiravir in humans. The patient-compliant oral dosage form of molnupiravir may hit the market in the first or second quarter of 2022. The patent data of molnupiravir revealed its granted compound patent and process-related patent applications. We also anticipate patent filing related to oral dosage forms, inhalers, and a combination of molnupiravir with marketed drugs like remdesivir, favipiravir, and baricitinib. The current pandemic demands a patient compliant, safe, tolerable, and orally effective COVID-19 treatment. The authors believe that molnupiravir meets these requirements and is a breakthrough COVID-19 treatment.  相似文献   
137.
Alloy formation at the Ni–Al interface for thin nickel films deposited on Al(110) surfaces has been studied using high-energy ion scattering/channeling (HEIS) and X-ray photoelectron spectroscopy (XPS). For nickel atoms deposited at room temperature on Al(110), a large amount of nickel–aluminum intermixing occurs at the interface. For the first two monolayers (ML) of deposited nickel, an NiAl-like compound is formed. The intermixing continues with a different rate, forming an Ni3Al-like compound for nickel coverages from 2 to 8 ML, at which point a nickel metal film begins to grow on the surface. Nickel atoms deposited at 250°C on the Al(110) surface exhibit no surface compound formation, but diffuse up to 400 Å into the aluminum substrate. Interatomic potentials based on the embedded-atom method (EAM) are used in a Monte Carlo approach to simulate the evolution of the Ni–Al(110) interface as a function of the nickel coverage. The calculated ion-scattering yields and X-ray photoelectron intensities from nickel and aluminum atoms in these simulated interfaces are in good quantitative agreement with the experimental results. The simulations show a high-density Ni–Al alloy forming at the Al(110) surface which apparently inhibits outward diffusion of aluminum, leading to the more nickel-rich alloy and finally nickel film growth. The ion-scattering simulations show an unusually large amount of backscattering occurring below the Ni–Al(110) interface, apparently associated with defocusing of the incident ion beam.  相似文献   
138.
Five new C2-symmetric chiral ligands of 2,5-bis(imidazolinyl)thiophene (L1–L3) and 2,5-bis(oxazolinyl)thiophene (L4 and L5) were synthesized from thiophene-2,5-dicarboxylic acid (1) with enantiopure amino alcohols (4a–c) in excellent optical purity and chemical yield. The utility of these new chiral ligands for Friedel–Crafts asymmetric alkylation was explored. Subsequently, the optimized tridentate ligand L5 and Cu(OTf)2 catalyst (15 mol%) in toluene for 48 h promoted Friedel–Crafts asymmetric alkylation in moderate to good yields (up to 76%) and with good enantioselectivity (up to 81% ee). The bis(oxazolinyl)thiophene ligands were more potent than bis(imidazolinyl)thiophene analogues for the asymmetric induction of the Friedel–Crafts asymmetric alkylation.  相似文献   
139.
Spectral dispersions of index of refraction \({n(\lambda )}\) and extinction coefficient \({\kappa (\lambda )}\) of undoped amorphous selenium (a-Se) films of three thicknesses (d?≈?0.5, 0.75, and 1.0 µm) were evaluated by analyzing experimental room-temperature normal-incidence transmittance-wavelength (\({{T_{{\text{exp}}}}(\lambda )} - \lambda\)) data (λ =?400–1100 µm) of their air-supported {a-Se film/thick glass slide}-stacks using Swanepoel’s transmission envelope theory of uniform films. Above a wavelength \({{\lambda _c}\,\, \approx \,\,640\;{\text{nm}}}\), as-measured \({{T_{{\text{exp}}}}(\lambda )}\,\, - \,\lambda\) spectra display well-resolved maxima and minima, with minor shrinkage in transparent and weak absorption regions (750–1100 nm). Below \({\lambda _{\text{c}}}\), a smeared sharp decline of \({{T_{{\text{exp}}}}(\lambda )}\) with decreasing λ, signifying strong absorption in a-Se films and existence of band-tail localized states. For λ > λ c, the \({n\,(\lambda )}\, - \,\lambda\) data retrieved from algebraic envelope procedures followed a Sellmeier-like dispersion relation, with the best-fit values of high-frequency dielectric constant \({{\varepsilon _\infty }\, \approx \,\,{\text{4.9}}}\), static index of refraction \({{n_{\text{0}}} = n\left( {E\, \to \,{\text{0}}} \right)\,\, \approx \,\,{\text{2.43}}}\), and resonance wavelength \({{\lambda _0}\, \approx \,490\,\,{\text{nm}}}\), which may be assigned to onset of photogeneration in a-Se. Urbach-like dependency of absorption coefficient \({\alpha (h{{\nu }})}\) of a-Se films on photon energy \({h{{\nu }}}\) was realized with an Urbach-tail breadth of 85 meV. All achieved optical parameters were found to be slightly dependent on film thickness. Findings of present algebraic analysis are consistent with reported literature results obtained on the basis of other optical analytical approaches.  相似文献   
140.
A pulsed laser emitting UV radiations generated by the third harmonic of Nd:YAG was applied for the synthesis of nano-structured ZnO2 and ZnO. For the synthesis of nanoparticles of ZnO2, a high-purity metallic plate of Zn target was fixed at the bottom of a glass cell, in the presence of deionized water mixed with oxidizing agent H2O2, under repeated laser irradiation. The optical properties, size and the morphology of the synthesized ZnO2 and ZnO by laser ablation was influenced strongly by post-annealing conditions which is not previously reported. By annealing ZnO2 at 200 °C for 8 h, the product (ZnO2) synthesized primarily was converted completely to ZnO. By variation of the annealing temperatures from 200 to 600 °C, the grain size of ZnO changes from 5 to 19 nm with a change in lattice parameters, the band gap and some other optical properties of nano-ZnO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号