首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1489篇
  免费   41篇
  国内免费   5篇
化学   1103篇
晶体学   9篇
力学   34篇
综合类   1篇
数学   197篇
物理学   191篇
  2023年   13篇
  2022年   16篇
  2021年   49篇
  2020年   42篇
  2019年   33篇
  2018年   30篇
  2017年   34篇
  2016年   47篇
  2015年   35篇
  2014年   51篇
  2013年   84篇
  2012年   91篇
  2011年   101篇
  2010年   67篇
  2009年   60篇
  2008年   86篇
  2007年   89篇
  2006年   68篇
  2005年   74篇
  2004年   66篇
  2003年   41篇
  2002年   51篇
  2001年   14篇
  2000年   14篇
  1999年   10篇
  1998年   10篇
  1997年   13篇
  1996年   14篇
  1995年   17篇
  1994年   12篇
  1993年   16篇
  1992年   14篇
  1991年   9篇
  1990年   10篇
  1989年   8篇
  1988年   11篇
  1987年   13篇
  1985年   4篇
  1983年   12篇
  1982年   11篇
  1981年   9篇
  1980年   8篇
  1979年   4篇
  1978年   10篇
  1977年   5篇
  1976年   10篇
  1975年   5篇
  1974年   8篇
  1970年   4篇
  1955年   3篇
排序方式: 共有1535条查询结果,搜索用时 93 毫秒
81.
Oxidative stress plays a key role in the pathophysiology of many diseases. Hydroxyl radical is the oxidative species most commonly causing damage to cells. The aim of this work was to optimize the method for antioxidant activity determination on a model lipophilic geranylated flavanone, diplacone. This method uses protection of plasmid DNA from oxidation by a hydroxyl radical generated by the Fenton reaction involving oxidation of metal ions using H2O2 and ascorbate. The method was optimized for lipophilic compounds using several solvents and co-solvents. It was found that (2-hydroxypropyl)-β-cyclodextrin (0.1 mass % aq. sol.) is the best co-solvent for our model lipophilic compound to measure the antioxidant activity by the method presented. Other solvents, namely dimethyl sulfoxide, Cremophor EL® (0.1 mass % aq. sol.), ethanol, and methanol, were not suitable for the determination of the antioxidant activity by the method described. Tween 80 (0.1 mass % aq. sol.) and a mixture of 10 vol. % ethanol and 9 mass % bovine serum albumin (aq. sol.) significantly decreased the antioxidant activity of the model lipophilic compound and thus were not suitable for this method.  相似文献   
82.
A systematic investigation of the systems Bi3+/carboxylic acid/HNO3 for the tri‐ and tetracarboxylic acids pyromellitic acid (H4Pyr), trimellitic acid (H3Tri) and trimesic acid (H3BTC) acid led to the discovery of five new bismuth carboxylates. Structural characterisation allowed the influence of the linker geometry and the Bi3+:linker molar ratio in the starting solution on the crystal structure to be determined. The crystallisation of three selected compounds was investigated by in situ energy‐dispersive X‐ray diffraction. Three new crystalline intermediates were observed within minutes, and two of them could be isolated by quenching of the reaction mixture. Their crystal structures were determined from laboratory and synchrotron X‐ray powder diffraction data and allowed a possible reaction pathway to be established. In depth characterisation of the luminescence properties of the three bismuth pyromellate compounds was carried out. Fluorescence and phosphorescence could be assigned to (mainly) ligand‐ and metal‐based transitions. The polymorphs of Bi(HPyr) exhibit different luminescence properties, although their structures are very similar. Surprisingly, doping of the three host structures with Eu3+ and Tb3+ ions was only successful for one of the polymorphs.  相似文献   
83.
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.  相似文献   
84.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   
85.
Soil salinity disrupts the physiological and biochemical processes of crop plants and ultimately leads to compromising future food security. Sodium nitroprusside (SNP), a contributor to nitric oxide (NO), holds the potential to alleviate abiotic stress effects and boost tolerance in plants, whereas less information is available on its role in salt-stressed lentils. We examined the effect of exogenously applied SNP on salt-stressed lentil plants by monitoring plant growth and yield-related attributes, biochemistry of enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) amassing of leaf malondialdehyde (MDA) and hydrogen peroxide (H2O2). Salinity stress was induced by NaCl application at concentrations of 50 mM (moderate salinity) and 100 mM (severe salinity), while it was alleviated by SNP application at concentrations of 50 µM and 100 µM. Salinity stress severely inhibited the length of roots and shoots, the relative water content, and the chlorophyll content of the leaves, the number of branches, pods, seeds, seed yield, and biomass per plant. In addition, MDA, H2O2 as well as SOD, CAT, and POD activities were increased with increasing salinity levels. Plants supplemented with SNP (100 µM) showed a significant improvement in the growth- and yield-contributing parameters, especially in plants grown under moderate salinity (50 mM NaCl). Essentially, the application of 100 µM SNP remained effective to rescue lentil plants under moderate salinity by regulating plant growth and biochemical pathways. Thus, the exogenous application of SNP could be developed as a useful strategy for improving the performance of lentil plants in salinity-prone environments.  相似文献   
86.
Hydrated aluminium cations have been investigated as a photochemical model system with up to ten water molecules by UV action spectroscopy in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Intense photodissociation was observed starting at 4.5 eV for two to eight water molecules with loss of atomic hydrogen, molecular hydrogen and water molecules. Quantum chemical calculations for n=2 reveal that solvation shifts the intense 3s–3p excitations of Al+ into the investigated photon energy range below 5.5 eV. During the photochemical relaxation, internal conversion from S1 to T2 takes place, and photochemical hydrogen formation starts on the T2 surface, which passes through a conical intersection, changing to T1. On this triplet surface, the electron that was excited to the Al 3p orbital is transferred to a coordinated water molecule, which dissociates into a hydroxide ion and a hydrogen atom. If the system remains in the triplet state, this hydrogen radical is lost directly. If the system returns to singlet multiplicity, the reaction may be reversed, with recombination with the hydroxide moiety and electron transfer back to aluminium, resulting in water evaporation. Alternatively, the hydrogen radical can attack the intact water molecule, forming molecular hydrogen and aluminium dihydroxide. Photodissociation is observed for up to n=8. Clusters with n=9 or 10 occur exclusively as HAlOH+(H2O)n-1 and are transparent in the investigated energy range. For n=4–8, a mixture of Al+(H2O)n and HAlOH+(H2O)n-1 is present in the experiment.  相似文献   
87.
The synthesis and photophysical properties of two novel multichromophoric compounds is presented. Their molecular design comprises a carbonyl‐bridged triarylamine core and either naphthalimides or 4‐(5‐hexyl‐2,2′‐bithiophene)naphthalimides as second chromophore in the periphery. The lateral chromophores are attached to the core via an amide linkage and a short alkyl spacer. The synthetic approach demonstrates a straightforward functionalization strategy for carbonyl‐bridged triarylamines. Steady‐state and time‐resolved spectroscopic investigations of these compounds, in combination with three reference compounds, provide clear evidence for energy transfer in both multichromophoric compounds. The direction of the energy transfer depends on the lateral chromophore used. Furthermore, the compound bearing the lateral 4‐(bithiophene)naphthaimides is capable of forming fluorescent gels at very low concentrations in the sub‐millimolar regime whilst retaining its energy transfer properties.  相似文献   
88.
Galacto-oligosaccharides are typically produced by an enzymatic reaction when the post-reaction mixture contains considerable amounts of lactose and glucose and a smaller amount of galactose. In order to develop a process of chromatographic removal of saccharide impurities, adsorption equilibria and kinetics of these di- and monosaccharides were investigated for Diaion UBK 530, an industrialgrade strong cation-exchanger in the Na+ form. Frontal chromatographic experiments were carried out in the temperature range of 30–70°C and a broad interval of saccharide concentrations up to 350 g L?1. Breakthrough curves were described using the equilibrium-dispersive model with the linear adsorption isotherm. Both the distribution and the axial dispersion coefficient values depended on the saccharide molecule type and size. No significant effect of temperature or concentration on the distribution coefficient was observed. The apparent dispersion coefficients of all saccharides exhibited some decrease with the temperature, which was caused by the decrease of the intraparticle mass transfer resistance. An analysis showed that both the intraparticle mass transfer and the axial dispersion had a significant influence on the front dispersion.  相似文献   
89.
This investigation aimed to study a “green” non-toxic biodegradable copper corrosion inhibitor in an acidic sodium sulphate solution. The methods used in the investigation of cysteine as a copper corrosion inhibitor in an acidic sodium sulphate solution were: potentiodynamic measurements, open circuit potential measurements, and chronoamperometric measurements. Optical microscopy was used in addition to electrochemical methods. Potentiodynamic measurements show that cysteine has good inhibitory properties in an acidic medium. Polarisation curves indicate that the presence of cysteine in a sulphate solution decreases the current density and that using various cysteine concentrations results in the formation of a protective film on the surface of the electrode due to the formation of the Cu(I)-cys complex. These results are confirmed by chronoamperometric measurements. Furthermore, it is clear from microphotographs that a protective film does form on copper electrode in the presence of cysteine. The Langmuir adsorption isotherm indicates that cysteine is chemisorbed on the surface of the electrode.  相似文献   
90.
Demonstrated here is a supramolecular approach to fabricate highly ordered monolayered hydrogen‐ and halogen‐bonded graphyne‐like two‐dimensional (2D) materials from triethynyltriazine derivatives on Au(111) and Ag(111). The 2D networks are stabilized by N???H?C(sp) bonds and N???Br?C(sp) bonds to the triazine core. The structural properties and the binding energies of the supramolecular graphynes have been investigated by scanning tunneling microscopy in combination with density‐functional theory calculations. It is revealed that the N???Br?C(sp) bonds lead to significantly stronger bonded networks compared to the hydrogen‐bonded networks. A systematic analysis of the binding energies of triethynyltriazine and triethynylbenzene derivatives further demonstrates that the X3‐synthon, which is commonly observed for bromobenzene derivatives, is weaker than the X6‐synthon for our bromotriethynyl derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号