首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   0篇
化学   15篇
力学   22篇
数学   28篇
物理学   16篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2013年   1篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2002年   2篇
  2001年   4篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
71.
Protein lateral mobility in surface-supported bilayers is often much lower than the mobility of the lipids. In the present study we explore whether the incorporation of a PEG cushion between the bilayer and the substrate increases the lateral mobility of transmembrane proteins in bilayers produced via directed assembly, a method based on Langmuir-Blodgett deposition techniques. In our experiments, the PEG cushions were incorporated by adding PEG lipids to the protein/lipid monolayer at the air/water interface, at the first step of bilayer assembly. The protein and lipid mobilities in 160 different bilayers, with various PEG molecular weights and PEG lipid concentrations, were measured and compared. We found that the measured diffusion coefficients do not depend on the PEG molecular weight or the PEG lipid concentration and are very similar to the values measured in the absence of PEG. Therefore, contrary to our expectations, we found that a PEG cushion does not necessarily increase protein mobility, suggesting that the low protein mobility is not a consequence of protein-substrate interactions. Furthermore, we showed that the low protein mobility is not due to protein aggregation. The major determinant of protein mobility in surface-supported bilayer systems appears to be the method of bilayer assembly. While proteins were always mobile if the bilayers were prepared using the directed assembly method, in the presence and absence of a PEG cushion, other bilayer assembly protocols resulted in complete lack of protein mobility.  相似文献   
72.
73.
A new method of calculating computer-generated true-color rainbow holograms (CGTCRH) is proposed. This technique allows the true-color object reconstruction. The main idea of the presented work is based on the additive properties of holographic wavefront reconstruction such that the resulting hologram is a superposition of three (or more) holograms, with each of them producing different color reconstruction of the same object. White light and monochromatic light reconstruction results are discussed.  相似文献   
74.
75.
Krug  VA Moro.  EG 《发光学报》1990,11(4):264-269
在α型正硅酸锌中,用接近吸收边(Eg~5.5eV)的光能激发,发现了激子能量传递到发光中心的某些特征。在一个弛豫状态上,激子扩散的激活能估计为0.075eV,激子在自局域化前通过的扩散体积为0.5×10-19cm-3。实验确定的磷光体中能量传递的参数可实用于选择最佳颗粒尺寸分布。  相似文献   
76.
77.
A technique for nonaxisymmetric thermoelastoplastic stress–strain analysis of laminated shells of revolution is developed. It is assumed that there is no slippage and the layers are not separated. The problem is solved using the geometrically linear theory of shells based on the Kirchhoff–Love hypotheses. The thermoplastic relations are written down in the form of the method of elastic solutions. The order of the system of partial differential equations obtained is reduced by means of trigonometric series in the circumferential coordinate. The systems of ordinary differential equations thus obtained are solved by Godunov's discrete-orthogonalization method. The nonaxisymmetric thermoelastoplastic stress–strain state of a two-layered shell is analyzed as an example  相似文献   
78.
A method to determine the nonstationary temperature fields and the thermoelastoplastic stress-strain state of noncircular cylindrical shells is developed. It is assumed that the physical and mechanical properties are dependent on temperature. The heat-conduction problem is solved using an explicit difference scheme. The temperature variation throughout the thickness is described by a power polynomial. For the other two coordinates, finite differences are used. The thermoplastic problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. The theory of simple processes with deformation history taken into account is used. Its equations are linearized by a modified method of elastic solutions. The governing system of partial differential equations is derived. Variables are separated in the case where the curvilinear edges are hinged. The partial case where the stress-strain state does not change along the generatrix is examined. The systems of ordinary differential equations obtained in all these cases are solved using Godunov's discrete orthogonalization. The temperature field in a shell with elliptical cross-section is studied. The stress-strain state found by numerical integration along the generatrix is compared with that obtained using trigonometric Fourier series. The effect of a Winkler foundation on the stress-strain state is analyzed Translated from Prikladnaya Mekhanika, Vol. 44, No. 8, pp. 79–90, August 2008.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号