首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1521篇
  免费   80篇
  国内免费   10篇
化学   926篇
晶体学   4篇
力学   78篇
综合类   1篇
数学   365篇
物理学   237篇
  2023年   7篇
  2022年   5篇
  2021年   21篇
  2020年   23篇
  2019年   22篇
  2018年   27篇
  2017年   21篇
  2016年   53篇
  2015年   52篇
  2014年   49篇
  2013年   95篇
  2012年   94篇
  2011年   108篇
  2010年   71篇
  2009年   69篇
  2008年   86篇
  2007年   100篇
  2006年   89篇
  2005年   83篇
  2004年   81篇
  2003年   76篇
  2002年   62篇
  2001年   22篇
  2000年   19篇
  1999年   24篇
  1998年   13篇
  1997年   19篇
  1996年   19篇
  1995年   11篇
  1994年   15篇
  1993年   14篇
  1992年   11篇
  1991年   12篇
  1990年   15篇
  1989年   5篇
  1988年   5篇
  1987年   6篇
  1985年   12篇
  1984年   11篇
  1983年   9篇
  1982年   11篇
  1981年   11篇
  1980年   11篇
  1979年   5篇
  1977年   11篇
  1976年   4篇
  1975年   6篇
  1973年   2篇
  1971年   2篇
  1970年   3篇
排序方式: 共有1611条查询结果,搜索用时 468 毫秒
991.
In this work, a methodology for the evaluation of enantioselective binding of imazalil (IMA) enantiomers to human serum albumin (HSA) that does not require the separation of free and bound to HSA fractions is developed. This methodology comprises the incubation of IMA–HSA designed mixtures for 30 min directly in the capillary electrophoresis system and the subsequent direct injection and chiral separation of IMA employing highly sulfated β‐cyclodextrin as chiral selector and the complete filling technique. Two mathematical approaches were used to estimate apparent affinity constants (K1), protein binding and enantioselectivity (ES) for both enantiomers of IMA. Moderate enantioselective binding of IMA enantiomers to HSA (ES = 2.0) was shown by the 1:1 stoichiometry and log K1 values of 3.4 ± 0.4 and 3.1 ± 0.3 for the first and second eluted enantiomers, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
992.
Optical monitoring of neuronal voltage using fluorescent indicators is a powerful approach for the interrogation of the cellular and molecular logic of the nervous system. Herein, a semisynthetic tethered voltage indicator (STeVI1) based upon nile red is described that displays voltage sensitivity when genetically targeted to neuronal membranes. This environmentally sensitive probe allows for wash‐free imaging and faithfully detects supra‐ and sub‐threshold activity in neurons.  相似文献   
993.
994.
The occurrence of formaldehyde in sap and wood tissue of treated and untreated maple sugar trees was investigated using GC/MS. Samples were collected at different periods of the 2009 season and at different locations in Quebec, Canada. The natural concentration of formaldehyde found in untreated samples varied according to periods and locations and ranged from below the LOQ to 1.82 mg/kg for sap samples and from 2.39 to 8.92 mg/kg of fresh tissue for wood samples. Late season samples tended to have higher concentrations of formaldehyde. Samples of sap and wood tissue from tapholes treated with solutions of formaldehyde showed increased concentrations of formaldehyde for many days after treatment and were clearly distinct from untreated samples. These results will be useful to elaborate new inspection procedures for sugarbushes to control the illegal use of formaldehyde.  相似文献   
995.
Recent increases in energy demands as a consequence of population growth and industrialization, and pollution caused during the extraction and combustion of fossil fuel sources have driven the development of new energy sources that do not cause pollution and are inexpensive and renewable. Consequently, it is necessary to develop alternative ways of generating biofuels that put less pressure on agricultural lands and water supplies, and ensure ecosystems conservation. In order to achieve the proposed goals related to energetic coverage and independence, several approaches have been developed, including biodiesel production using vegetal oils as feedstock. The aim of the current research project was to apply a nonconventional bioprocess for in vitro biomass and oil production of Jatropha curcas, for assessing different J. curcas varieties, where seed tissue was isolated and used for callus induction. Once friable callus was obtained, cell suspension cultures were established. The cell viability, fatty acid content, and characteristics were used to select the most promising cell line according to its fatty acid profile and ability to grow and develop under in vitro conditions. Oil produced by cell suspension culture of the Jatropha varieties studied was extracted and characterized by GC/MS. Differences encountered among Jatropha varieties were related to their fatty acid profiles, oil content (% on dry basis), and cell viability measurements (%).  相似文献   
996.
997.
In this review an overview about biological applications of magnetic colloidal nanoparticles will be given, which comprises their synthesis, characterization, and in vitro and in vivo applications. The potential future role of magnetic nanoparticles compared to other functional nanoparticles will be discussed by highlighting the possibility of integration with other nanostructures and with existing biotechnology as well as by pointing out the specific properties of magnetic colloids. Current limitations in the fabrication process and issues related with the outcome of the particles in the body will be also pointed out in order to address the remaining challenges for an extended application of magnetic nanoparticles in medicine.  相似文献   
998.
Gold nanoparticles (AuNPs) are considered useful vehicles for medical therapy and diagnosis. Despite the progress made in this field, there is need to find direct, reliable, and versatile synthetic procedures for their preparation as well as new multifunctional coating agents. In this sense, we have explored the use of imidazolium amphiphiles to prepare new AuNPs designed for anion recognition and transport. Thus, in this work we describe (a) the synthesis, by a phase transfer method, of new gold nanoparticles using gemini-type surfactants as ligands based on imidazolium salts, those ligands acting as transfer agents into organic media and also as nanoparticle stabilizers, (b) the examination of their stability in solution, (c) the chemical and physical characterization of the nanoparticles, using a variety of techniques, including UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), (d) toxicity data concerning both the imidazolium ligands and the imidazolium coated nanoparticles, (e) the assessment of their molecular recognition ability toward molecules of biological interest, such as anions and carboxylate containing model drugs, such as ibuprofen, (f) the study of their toxicity and those of their coating ligands, as well as their ability for cell internalization, and (g) the study of their ability for delivering anionic pharmaceuticals. The structurally governed triple role of those new gemini-type surfactants is responsible for the preparation, remarkable stability, and delivery properties of these functional AuNPs.  相似文献   
999.
Through the heterogeneous nucleation of polymer nodules on a surface-modified silica particle, the high-yield achievement of hybrid colloidal molecules with a well-controlled multipod-like morphology was recently demonstrated. However, as the formation mechanism of these colloidal molecules has not been completely understood yet, some opportunities remain to reduce the tedious empirical process needed to optimize the chemical recipes. In this work, we propose a model to help understand the formation mechanism of almost pure suspensions of well-defined colloidal molecules. The outcomes of the model allow proposing probable nucleation growth scenario able to explain the experimental results. Such a model should make easier the determination of the optimal recipe parameters for a targeted morphology. The reasonably good agreements between the model and the experimental results show that the most important processes have been captured. It is thus a first step toward the rational design of large quantities of chemically prepared colloidal molecules.  相似文献   
1000.
The performance of nanomaterials for biomedical applications is highly dependent on the nature and the quality of surface coatings. In particular, the development of functionalized nanoparticles for magnetic resonance imaging (MRI) requires the grafting of hydrophilic, nonimmunogenic, and biocompatible polymers such as poly(ethylene glycol) (PEG). Attached at the surface of nanoparticles, this polymer enhances the steric repulsion and therefore the stability of the colloids. In this study, phosphate molecules were used as an alternative to silanes or carboxylic acids, to graft PEG at the surface of ultrasmall gadolinium oxide nanoparticles (US-Gd(2)O(3), 2-3 nm diameter). This emerging, high-sensitivity "positive" contrast agent is used for signal enhancement in T(1)-weighted molecular and cellular MRI. Comparative grafting assays were performed on Gd(2)O(3) thin films, which demonstrated the strong reaction of phosphate with Gd(2)O(3) compared to silane and carboxyl groups. Therefore, PEG-phosphate was preferentially used to coat US-Gd(2)O(3) nanoparticles. The grafting of this polymer on the particles was confirmed by XPS and FTIR. These analyses also demonstrated the strong attachment of PEG-phosphate at the surface of Gd(2)O(3), forming a protective layer on the nanoparticles. The stability in aqueous solution, the relaxometric properties, and the MRI signal of PEG-phosphate-covered Gd(2)O(3) particles were also better than those from non-PEGylated nanoparticles. As a result, reacting PEG-phosphate with Gd(2)O(3) particles is a promising, rapid, one-step procedure to PEGylate US-Gd(2)O(3) nanoparticles, an emerging "positive" contrast agent for preclinical molecular and cellular applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号