首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   831篇
  免费   28篇
  国内免费   9篇
化学   495篇
晶体学   1篇
力学   16篇
数学   206篇
物理学   150篇
  2023年   4篇
  2021年   9篇
  2020年   15篇
  2019年   15篇
  2018年   15篇
  2017年   17篇
  2016年   23篇
  2015年   21篇
  2014年   9篇
  2013年   46篇
  2012年   50篇
  2011年   57篇
  2010年   41篇
  2009年   44篇
  2008年   51篇
  2007年   51篇
  2006年   64篇
  2005年   41篇
  2004年   54篇
  2003年   51篇
  2002年   38篇
  2001年   7篇
  2000年   7篇
  1999年   3篇
  1998年   13篇
  1997年   12篇
  1996年   10篇
  1995年   5篇
  1994年   6篇
  1993年   8篇
  1992年   13篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   5篇
  1978年   2篇
  1977年   2篇
  1956年   1篇
  1943年   1篇
  1934年   1篇
  1931年   2篇
  1930年   3篇
  1903年   1篇
排序方式: 共有868条查询结果,搜索用时 15 毫秒
11.
Explicit expressions are presented for calculating vibration-to-translation (VT) energy conversion probabilities, essential in molecular laser isotope separation. VT conversions in molecular collisions occur by two mechanisms: (1) high-energy impact transfers prevailing at higher temperatures, and (2) Van der Waals-bonding encounters followed by (pre-)dissociations at lower temperatures. While mechanism (1) has been studied for over fifty years culminating in the Schwartz–Slawsky–Herzberg relation, a useful analytic expression for (2) has so far been lacking. An improved dimer formation theory developed by the author together with molecular pre-dissociation physics now provides a VT conversion relation for mechanism (2), which correctly predicts observations.  相似文献   
12.
The thermal and/or catalytic degradation of chloride-containing polymers causes dehydrohalogenation which produces hydrochloric acid. A nonaqueous method has been developed for the termination of hydrochloric acid. The sample is dissolved in tetrahydrofuran and titrated potentiometrically with a standard tetrabutylammonium hydroxide solution in a 7.5% (V/V) aqueous tetrahydrofuran solution with a combination glass-calomel electrode. The method has a relative precision of ±3.7% at the 95% confidence limit and a sensitivity of 25 ppm HCI.  相似文献   
13.
Periodic, self-consistent, density functional theory calculations have been performed to demonstrate that subsurface oxygen (O(sb)) dramatically increases the reactivity of the Ag(111) surface. O(sb) greatly facilitates the dissociation of H2, O2, and NO and enhances the binding of H, C, N, O, O2, CO, NO, C2H2, and C2H4 on the Ag(111) surface. This effect originates from an O(sb)-induced upshift of the d-band center of the Ag surface and becomes more pronounced at higher O(sb) coverage. Our findings point to the important role that near-surface impurities, such as O(sb), can play in determining the thermochemistry and kinetics of elementary steps catalyzed by transition metal surfaces.  相似文献   
14.
Summary. Early research investigating the effects of L-carnitine supplementation has examined its role in substrate metabolism and in acute exercise performance. These studies have yielded equivocal findings, partially due to difficulties in increasing muscle carnitine concentrations. However, recent studies have proposed that L-carnitine may play a different role in exercise physiology, and preliminary results have been encouraging. Current investigations have theorized that L-carnitine supplementation facilitates exercise recovery. Proposed mechanism is as follows: 1) increased serum carnitine concentration enhances capillary endothelial function; 2) increased blood flow and reduced hypoxia mitigate the cascade of ensuing, destructive chemical events following exercise; 3) thus allowing reduced structural damage of skeletal muscle mediated by more intact receptors in muscle needed for improved protein signaling. This paradigm explains decreased markers of purine catabolism, free radical formation, and muscle tissue disruption after resistance exercise and the increased repair of muscle proteins following long-term L-carnitine supplementation.  相似文献   
15.
16.
A first-principles study of methanol decomposition on Pt(111)   总被引:1,自引:0,他引:1  
A periodic, self-consistent, Density Functional Theory study of methanol decomposition on Pt(111) is presented. The thermochemistry and activation energy barriers for all the elementary steps, starting with O[bond]H scission and proceeding via sequential hydrogen abstraction from the resulting methoxy intermediate, are presented here. The minimum energy path is represented by a one-dimensional potential energy surface connecting methanol with its final decomposition products, CO and hydrogen gas. It is found that the rate-limiting step for this decomposition pathway is the abstraction of hydroxyl hydrogen from methanol. CO is clearly identified as a strong thermodynamic sink in the reaction pathway while the methoxy, formaldehyde, and formyl intermediates are found to have low barriers to decomposition, leading to very short lifetimes for these intermediates. Stable intermediates and transition states are found to obey gas-phase coordination and bond order rules on the Pt(111) surface.  相似文献   
17.
DFT calculations have been performed with the B3LYP and MPW1K functional on the hydrogen atom abstraction reactions of ethenoxyl with ethenol and of phenoxyl with both phenol and alpha-naphthol. Comparison with the results of G3 calculations shows that B3LYP seriously underestimates the barrier heights for the reaction of ethenoxyl with ethenol by both proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms. The MPW1K functional also underestimates the barrier heights, but by much less than B3LYP. Similarly, comparison with the results of experiments on the reaction of phenoxyl radical with alpha-naphthol indicates that the barrier height for the preferred PCET mechanism is calculated more accurately by MPW1K than by B3LYP. These findings indicate that the MPW1K functional is much better suited than B3LYP for calculations on hydrogen abstraction reactions by both HAT and PCET mechanisms.  相似文献   
18.
Antifreeze proteins (AFPs) protect organisms from freezing damage by inhibiting the growth of seed-ice crystals. It has long been hypothesized that irreversible binding of AFPs to ice surfaces is responsible for inhibiting the growth of seed-ice crystals as such a mechanism supports the popularly accepted Kelvin effect for the explanation of local freezing-point depression. However, whether the binding is reversible or irreversible is still under debate due to the lack of direct experimental evidence. Here, we report the first direct experimental result, by using the newly developed multiple quantum (MQ) filtering-spin exchange NMR experiment, that shows that the binding of HPLC6 peptides to ice surfaces is reversible. It was found that the reversible process can be explained by the model of monolayer adsorption. These results suggest that the Kelvin effect is not suitable for explaining the antifreeze mechanism, and direct interactions between the peptides and the ice-surface binding sites are the driving forces for the binding of AFPs to ice surfaces. We propose that there exists a concentration gradient of AFP from an ice-binding surface to the solution due to the affinity of ice surfaces to AFPs. This concentration gradient creates a dense layer of AFP in contact with the ice-binding surface, which depresses the local freezing point because of the colligative property, but not the Kelvin effect.  相似文献   
19.
Single crystal X-ray diffraction is the technique of choice for studying the interactions of small organic molecules with proteins by determining their three-dimensional structures; however the requirement for highly purified protein and lack of process automation have traditionally limited its use in this field. Despite these shortcomings, the use of crystal structures of therapeutically relevant drug targets in pharmaceutical research has increased significantly over the last decade. The application of structure-based drug design has resulted in several marketed drugs and is now an established discipline in most pharmaceutical companies. Furthermore, the recently published full genome sequences of Homo sapiens and a number of micro-organisms have provided a plethora of new potential drug targets that could be utilised in structure-based drug design programs. In order to take maximum advantage of this explosion of information, techniques have been developed to automate and speed up the various procedures required to obtain protein crystals of suitable quality, to collect and process the raw X-ray diffraction data into usable structural information, and to use three-dimensional protein structure as a basis for drug discovery and lead optimisation.This tutorial review covers the various technologies involved in the process pipeline for high-throughput protein crystallography as it is currently being applied to drug discovery. It is aimed at synthetic and computational chemists, as well as structural biologists, in both academia and industry, who are interested in structure-based drug design.  相似文献   
20.
Ion chromatography was used to determine trace anionic contamination on the surface of hard disk drive components. These contaminants can have a detrimental effect on device reliability and yield. Disk drive components were soaked in deionized water and these extracts were analyzed for anions. The anions fluoride, acetate, formate, acrylate, methacrylate, chloride, nitrite, bromide, nitrate, benzoate, sulfate, oxalate, phthalate and phosphate were separated on a high-performance anion-exchange column and determined at concentrations less than 1 microg/l with suppressed conductivity detection. The extract solutions were analyzed either by injecting 1 ml or by preconcentrating 5 ml. We evaluated the performance of both methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号